These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38820839)

  • 21. Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation.
    Sun Q; Wang N; Bai R; Hui Y; Zhang T; Do DA; Zhang P; Song L; Miao S; Yu J
    Adv Sci (Weinh); 2019 May; 6(10):1802350. PubMed ID: 31131197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Boron/nitrogen-trapping and regulative electronic states around Ru nanoparticles towards bifunctional hydrogen production.
    Song S; Wu S; He Y; Zhang Y; Fan G; Long Y; Song S
    J Colloid Interface Sci; 2024 Oct; 672():675-687. PubMed ID: 38865881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MoO₃-Doped MnCo₂O₄ Microspheres Consisting of Nanosheets: An Inexpensive Nanostructured Catalyst to Hydrolyze Ammonia Borane for Hydrogen Generation.
    Lu D; Feng Y; Ding Z; Liao J; Zhang X; Liu HR; Li H
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30586914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane.
    Peng CY; Kang L; Cao S; Chen Y; Lin ZS; Fu WF
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15725-9. PubMed ID: 26545954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly electron-deficient ultrathin Co nanosheets supported on mesoporous Cr
    Song J; Wu F
    Nanoscale; 2023 Oct; 15(41):16741-16751. PubMed ID: 37814935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Why do Single-Atom Alloys Catalysts Outperform both Single-Atom Catalysts and Nanocatalysts on MXene?
    Guan S; Yuan Z; Zhuang Z; Zhang H; Wen H; Fan Y; Li B; Wang D; Liu B
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202316550. PubMed ID: 38038407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chemistry; 2012 Jun; 18(25):7925-30. PubMed ID: 22539444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple and straightforward strategy for synthesis of N,P co-doped porous carbon: an efficient support for Rh nanoparticles for dehydrogenation of ammonia borane and catalytic application.
    Luo W; Zhao X; Cheng W; Zhang Y; Wang Y; Fan G
    Nanoscale Adv; 2020 Apr; 2(4):1685-1693. PubMed ID: 36132330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cobalt Phosphide-Supported Single-Atom Pt Catalysts for Efficient and Stable Hydrogen Generation from Ammonia Borane Hydrolysis.
    Wang S; Li S; Yu Y; Zhang T; Qu J; Sun Q
    Small Methods; 2024 May; ():e2400376. PubMed ID: 38801007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hexagonal CuCo₂O₄ Nanoplatelets, a Highly Active Catalyst for the Hydrolysis of Ammonia Borane for Hydrogen Production.
    Liao J; Feng Y; Wu S; Ye H; Zhang J; Zhang X; Xie F; Li H
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic interface between metal Cu nanoparticles and CoO for highly efficient hydrogen production from ammonia borane.
    Li H; He W; Xu L; Pan Y; Xu R; Sun Z; Wei S
    RSC Adv; 2023 Apr; 13(17):11569-11576. PubMed ID: 37063727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane.
    Akbayrak S; Özçifçi Z; Tabak A
    J Colloid Interface Sci; 2019 Jun; 546():324-332. PubMed ID: 30927596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane.
    Akbayrak S; Ozkar S
    Dalton Trans; 2014 Jan; 43(4):1797-805. PubMed ID: 24247216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ni
    Feng Y; Zhang J; Ye H; Li L; Wang H; Li X; Zhang X; Li H
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31540373
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane.
    Xu H; Yu W; Zhang J; Zhou Z; Zhang H; Ge H; Wang G; Qin Y
    J Colloid Interface Sci; 2022 Mar; 609():755-763. PubMed ID: 34823851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane.
    Guan S; Liu Y; Zhang H; Shen R; Wen H; Kang N; Zhou J; Liu B; Fan Y; Jiang J; Li B
    Adv Sci (Weinh); 2023 Jul; 10(21):e2300726. PubMed ID: 37118857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulating Electronic Metal-Support Interactions to Boost Visible-Light-Driven Hydrolysis of Ammonia Borane: Nickel-Platinum Nanoparticles Supported on Phosphorus-Doped Titania.
    Wan C; Li G; Wang J; Xu L; Cheng DG; Chen F; Asakura Y; Kang Y; Yamauchi Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202305371. PubMed ID: 37291046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane.
    Li C; Wang D; Wang Y; Li G; Hu G; Wu S; Cao Z; Zhang K
    J Colloid Interface Sci; 2018 Aug; 524():25-31. PubMed ID: 29627669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering a hollow bowl-like porous carbon-confined Ru-MgO hetero-structured nanopair as a high-performance catalyst for ammonia borane hydrolysis.
    Yang J; Yang Z; Li J; Gang H; Mei D; Yin D; Deng R; Zhu Y; Li X; Wang N; Osman SM; Yamauchi Y
    Mater Horiz; 2024 Apr; 11(8):2032-2040. PubMed ID: 38372566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasmall Ru Nanoparticles Highly Dispersed on Sulfur-Doped Graphene for HER with High Electrocatalytic Performance.
    Sun X; Gao X; Chen J; Wang X; Chang H; Li B; Song D; Li J; Li H; Wang N
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48591-48597. PubMed ID: 33073562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.