BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38820915)

  • 1. Growth physiology and chlorophyll fluorescence analysis of two moss species under different LED light qualities.
    Xie M; Wang X; Zeng Q; Shen J; Huang B
    Plant Physiol Biochem; 2024 Jul; 212():108777. PubMed ID: 38820915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation of Haslea ostrearia to light of different spectral qualities - confirmation of 'chromatic adaptation' in diatoms.
    Mouget JL; Rosa P; Tremblin G
    J Photochem Photobiol B; 2004 Jul; 75(1-2):1-11. PubMed ID: 15246344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.
    Heber U; Bilger W; Bligny R; Lange OL
    Planta; 2000 Nov; 211(6):770-80. PubMed ID: 11144261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng.].
    Xu XZ; Zhang JY; Zhang GH; Long GQ; Yang SC; Chen ZJ; Wei FG; Chen JW
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):193-204. PubMed ID: 29692028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light Quality-Dependent Regulation of Non-Photochemical Quenching in Tomato Plants.
    Trojak M; Skowron E
    Biology (Basel); 2021 Jul; 10(8):. PubMed ID: 34439953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspective of Monitoring Heavy Metals by Moss Visible Chlorophyll Fluorescence Parameters.
    Chen YE; Wu N; Zhang ZW; Yuan M; Yuan S
    Front Plant Sci; 2019; 10():35. PubMed ID: 30740119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths.
    Gao S; Liu X; Liu Y; Cao B; Chen Z; Xu K
    BMC Plant Biol; 2020 Feb; 20(1):78. PubMed ID: 32066376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.
    Tang L; Ying RR; Jiang D; Zeng XW; Morel JL; Tang YT; Qiu RL
    Plant Physiol Biochem; 2013 Dec; 73():70-6. PubMed ID: 24077231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow induction of chlorophyll a fluorescence excited by blue and red light in Tradescantia leaves acclimated to high and low light.
    Kalmatskaya OA; Karavaev VA; Tikhonov AN
    Photosynth Res; 2019 Dec; 142(3):265-282. PubMed ID: 31435864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the growth of Physcomitrella patens by combination of monochromatic red and blue light - a kinetic study.
    Cerff M; Posten C
    Biotechnol J; 2012 Apr; 7(4):527-36. PubMed ID: 21751390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light.
    Hamdani S; Khan N; Perveen S; Qu M; Jiang J; Govindjee ; Zhu XG
    Photosynth Res; 2019 Mar; 139(1-3):107-121. PubMed ID: 30456488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Momilactone A and B as allelochemicals from moss Hypnum plumaeforme: first occurrence in bryophytes.
    Nozaki H; Hayashi K; Nishimura N; Kawaide H; Matsuo A; Takaoka D
    Biosci Biotechnol Biochem; 2007 Dec; 71(12):3127-30. PubMed ID: 18071239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata.
    Xu Y; Yang M; Cheng F; Liu S; Liang Y
    BMC Plant Biol; 2020 Jun; 20(1):269. PubMed ID: 32517650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic regulation in fluctuating light under combined stresses of high temperature and dehydration in three contrasting mosses.
    Xia H; Chen K; Liu L; Plenkovic-Moraj A; Sun G; Lei Y
    Plant Sci; 2022 Oct; 323():111379. PubMed ID: 35850284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of nitrogen fertilizer reduction management on photosynthesis and chlorophyll fluorescence characteristics of sweetpotato].
    Du XB; Wang JB; Liu XP; Xia JP; Han Y
    Ying Yong Sheng Tai Xue Bao; 2019 Apr; 30(4):1253-1260. PubMed ID: 30994286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center?
    Bukhov NG; Heber U; Wiese C; Shuvalov VA
    Planta; 2001 Apr; 212(5-6):749-58. PubMed ID: 11346948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents.
    Van Gaalen KE; Flanagan LB; Peddle DR
    Oecologia; 2007 Aug; 153(1):19-28. PubMed ID: 17406904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay.
    Yamakawa H; Itoh S
    Biochemistry; 2013 Jul; 52(26):4451-9. PubMed ID: 23750703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations.
    Peng J; Feng Y; Wang X; Li J; Xu G; Phonenasay S; Luo Q; Han Z; Lu W
    Sci Rep; 2021 Apr; 11(1):7485. PubMed ID: 33820934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.