BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38821280)

  • 1. A spatio-temporal analysis of environmental fate and transport processes of pesticides and their transformation products in agricultural landscapes dominated by subsurface drainage with SWAT.
    Wendell AK; Guse B; Bieger K; Wagner PD; Kiesel J; Ulrich U; Fohrer N
    Sci Total Environ; 2024 Oct; 945():173629. PubMed ID: 38821280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving nitrate load simulation of the SWAT model in an extensively tile-drained watershed.
    Kim J; Her Y; Bhattarai R; Jeong H
    Sci Total Environ; 2023 Dec; 904():166331. PubMed ID: 37595899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physico-chemical characteristics affect the spatial distribution of pesticide and transformation product loss to an agricultural brook.
    Gassmann M; Olsson O; Stamm C; Weiler M; Kümmerer K
    Sci Total Environ; 2015 Nov; 532():733-43. PubMed ID: 26119387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain and retain - On the efficiency of modified agricultural drainage ponds for pesticide retention.
    Willkommen S; Lange J; Pfannerstill M; Fohrer N; Ulrich U
    Sci Total Environ; 2022 Aug; 836():155405. PubMed ID: 35469862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of rapid transport of pesticides from sloping farmland to surface waters: processes and mitigation strategies.
    Tang X; Zhu B; Katou H
    J Environ Sci (China); 2012; 24(3):351-61. PubMed ID: 22655346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the Environmental Fate of the Herbicides Flufenacet and Metazachlor with the SWAT Model.
    Fohrer N; Dietrich A; Kolychalow O; Ulrich U
    J Environ Qual; 2014 Jan; 43(1):75-85. PubMed ID: 25602542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of pesticides from agricultural fields in SE Norway--runoff through surface and drainage water.
    Riise G; Lundekvam H; Wu QL; Haugen LE; Mulder J
    Environ Geochem Health; 2004; 26(2-3):269-76. PubMed ID: 15499783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omnipresent distribution of herbicides and their transformation products in all water body types of an agricultural landscape in the North German Lowland.
    Ulrich U; Pfannerstill M; Ostendorp G; Fohrer N
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):44183-44199. PubMed ID: 33847885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field insights into leaching and transformation of pesticides and fluorescent tracers in agricultural soil.
    Willkommen S; Lange J; Ulrich U; Pfannerstill M; Fohrer N
    Sci Total Environ; 2021 Jan; 751():141658. PubMed ID: 32871316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components.
    Zajíček A; Fučík P; Kaplická M; Liška M; Maxová J; Dobiáš J
    Water Sci Technol; 2018 Apr; 77(7-8):1879-1890. PubMed ID: 29676745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving model capability in simulating spatiotemporal variations and flow contributions of nitrate export in tile-drained catchments.
    Cao P; Lu C; Crumpton W; Helmers M; Green D; Stenback G
    Water Res; 2023 Oct; 244():120489. PubMed ID: 37651862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils.
    Kjær J; Ernsten V; Jacobsen OH; Hansen N; de Jonge LW; Olsen P
    Chemosphere; 2011 Jul; 84(4):471-9. PubMed ID: 21481435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling.
    Bailey RT; Bieger K; Flores L; Tomer M
    Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the hooghoudt and kirkham tile drain equations in the soil and water assessment tool to simulate tile flow and nitrate-nitrogen.
    Moriasi DN; Gowda PH; Arnold JG; Mulla DJ; Ale S; Steiner JL; Tomer MD
    J Environ Qual; 2013 Nov; 42(6):1699-710. PubMed ID: 25602410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed.
    Ouyang W; Cai G; Tysklind M; Yang W; Hao F; Liu H
    Water Res; 2017 Oct; 122():377-386. PubMed ID: 28622630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
    Ren D; Engel B; Mercado JAV; Guo T; Liu Y; Huang G
    Water Res; 2022 Feb; 210():117976. PubMed ID: 34953214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emission estimation and fate modelling of three typical pesticides in Dongjiang River basin, China.
    Zhang B; Zhang QQ; Zhang SX; Xing C; Ying GG
    Environ Pollut; 2020 Mar; 258():113660. PubMed ID: 31818613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Springs drive downstream nitrate export from artificially-drained agricultural headwater catchments.
    Goeller BC; Febria CM; Warburton HJ; Hogsden KL; Collins KE; Devlin HS; Harding JS; McIntosh AR
    Sci Total Environ; 2019 Jun; 671():119-128. PubMed ID: 30928741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pesticide fate at watershed scale: A new framework integrating multimedia behavior with hydrological processes.
    Yan X; Zhang Z; Chen L; Jiao C; Zhu K; Guo J; Pang M; Jin Z; Shen Z
    J Environ Manage; 2022 Oct; 319():115758. PubMed ID: 35982562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticide modelling for a small catchment using SWAT-2000.
    Kannan N; White SM; Worrall F; Whelan MJ
    J Environ Sci Health B; 2006; 41(7):1049-70. PubMed ID: 16923591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.