These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3882155)

  • 1. The effects of cesium chloride on insulin release, ionic fluxes and membrane potential in pancreatic B-cells.
    Paolisso G; Nenquin M; Meissner HP; Henquin JC
    Biochim Biophys Acta; 1985 Feb; 844(2):200-8. PubMed ID: 3882155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acute sodium omission on insulin release, ionic flux and membrane potential in mouse pancreatic B-cells.
    de Miguel R; Tamagawa T; Schmeer W; Nenquin M; Henquin JC
    Biochim Biophys Acta; 1988 Apr; 969(2):198-207. PubMed ID: 3281715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride modulation of insulin release, 86Rb+ efflux, and 45Ca2+ fluxes in rat islets stimulated by various secretagogues.
    Tamagawa T; Henquin JC
    Diabetes; 1983 May; 32(5):416-23. PubMed ID: 6341124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparteine increases insulin release by decreasing the K+ permeability of the B-cell membrane.
    Paolisso G; Nenquin M; Schmeer W; Mathot F; Meissner HP; Henquin JC
    Biochem Pharmacol; 1985 Jul; 34(13):2355-61. PubMed ID: 3893438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epinephrine modifications of insulin release and of 86Rb+ or 45Ca2+ fluxes in rat islets.
    Tamagawa T; Henquin JC
    Am J Physiol; 1983 Mar; 244(3):E245-52. PubMed ID: 6338738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells.
    Henquin JC; Meissner HP
    Biochem Pharmacol; 1982 Apr; 31(7):1407-15. PubMed ID: 7046755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin.
    Henquin JC; Meissner HP
    Endocrinology; 1984 Sep; 115(3):1125-34. PubMed ID: 6086286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the stimulation of insulin release in vitro by HB 699, a benzoic acid derivative similar to the non-sulphonylurea moiety of glibenclamide.
    Garrino MG; Schmeer W; Nenquin M; Meissner HP; Henquin JC
    Diabetologia; 1985 Sep; 28(9):697-703. PubMed ID: 3934021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ionic, electrical, and secretory effects of protein kinase C activation in mouse pancreatic B-cells: studies with a phorbol ester.
    Bozem M; Nenquin M; Henquin JC
    Endocrinology; 1987 Sep; 121(3):1025-33. PubMed ID: 3304975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chloride deficiency on the pancreatic B-cell response to acetylcholine.
    Hermans MP; Schmeer W; Gérard M; Henquin JC
    Biochim Biophys Acta; 1991 Apr; 1092(2):205-10. PubMed ID: 2018787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation by cytosolic pH of calcium and rubidium fluxes in rat pancreatic islets.
    Best L; Yates AP; Gordon C; Tomlinson S
    Biochem Pharmacol; 1988 Dec; 37(24):4611-5. PubMed ID: 3060124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic control of pancreatic B cell function involves sodium-dependent depolarization and calcium influx.
    Henquin JC; Garcia MC; Bozem M; Hermans MP; Nenquin M
    Endocrinology; 1988 May; 122(5):2134-42. PubMed ID: 3282876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane.
    Drews G; Debuyser A; Nenquin M; Henquin JC
    Endocrinology; 1990 Mar; 126(3):1646-53. PubMed ID: 1689655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic adenosine monophosphate differently affects the response of mouse pancreatic beta-cells to various amino acids.
    Henquin JC; Meissner HP
    J Physiol; 1986 Dec; 381():77-93. PubMed ID: 3040964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is there a role for osmotic events in the exocytotic release of insulin?
    Hermans MP; Henquin JC
    Endocrinology; 1986 Jul; 119(1):105-11. PubMed ID: 3522206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrogenic sodium-potassium pump of mouse pancreatic B-cells.
    Henquin JC; Meissner HP
    J Physiol; 1982 Nov; 332():529-52. PubMed ID: 6759632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct mechanisms for two amplification systems of insulin release.
    Henquin JC; Bozem M; Schmeer W; Nenquin M
    Biochem J; 1987 Sep; 246(2):393-9. PubMed ID: 2825637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormalities in glucose-stimulated insulin release, 45Ca uptake, and 86Rb efflux in diabetic Chinese hamster islets.
    Frankel BJ; Sehlin J
    Diabetes; 1987 May; 36(5):648-53. PubMed ID: 3552797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation transport by pancreatic beta-cells: effect of 4-aminopyridine on 86Rb+ and 45Ca2+ fluxes.
    Boschero AC; Reis LC; Dias O; Delattre E; Gonçalves AA
    Q J Exp Physiol; 1987 Oct; 72(4):453-60. PubMed ID: 2827222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells.
    Hermans MP; Schmeer W; Henquin JC
    Endocrinology; 1987 May; 120(5):1765-73. PubMed ID: 3552623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.