These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 38821635)

  • 1. Microbial metabolites as modulators of host physiology.
    Joyce SA; Clarke DJ
    Adv Microb Physiol; 2024; 84():83-133. PubMed ID: 38821635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut microbiota-derived metabolites as central regulators in metabolic disorders.
    Agus A; Clément K; Sokol H
    Gut; 2021 Jun; 70(6):1174-1182. PubMed ID: 33272977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases.
    Hosseinkhani F; Heinken A; Thiele I; Lindenburg PW; Harms AC; Hankemeier T
    Gut Microbes; 2021; 13(1):1-22. PubMed ID: 33590776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes.
    Zhu T; Goodarzi MO
    Curr Nutr Rep; 2020 Jun; 9(2):83-93. PubMed ID: 32157661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease.
    Masse KE; Lu VB
    Front Endocrinol (Lausanne); 2023; 14():1169624. PubMed ID: 37560311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut Microbiota and Cardiovascular Disease.
    Witkowski M; Weeks TL; Hazen SL
    Circ Res; 2020 Jul; 127(4):553-570. PubMed ID: 32762536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between gut microbiota and non-alcoholic liver disease: The role of microbiota-derived metabolites.
    Ding Y; Yanagi K; Cheng C; Alaniz RC; Lee K; Jayaraman A
    Pharmacol Res; 2019 Mar; 141():521-529. PubMed ID: 30660825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases.
    Neves AL; Chilloux J; Sarafian MH; Rahim MB; Boulangé CL; Dumas ME
    Curr Opin Pharmacol; 2015 Dec; 25():36-44. PubMed ID: 26531326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gut-liver axis-mediated mechanism of liver cancer: A special focus on the role of gut microbiota.
    Ohtani N; Hara E
    Cancer Sci; 2021 Nov; 112(11):4433-4443. PubMed ID: 34533882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short chain fatty acids in human gut and metabolic health.
    Blaak EE; Canfora EE; Theis S; Frost G; Groen AK; Mithieux G; Nauta A; Scott K; Stahl B; van Harsselaar J; van Tol R; Vaughan EE; Verbeke K
    Benef Microbes; 2020 Sep; 11(5):411-455. PubMed ID: 32865024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease.
    Makki K; Deehan EC; Walter J; Bäckhed F
    Cell Host Microbe; 2018 Jun; 23(6):705-715. PubMed ID: 29902436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding connections and roles of gut microbiome in cardiovascular diseases.
    Rajendiran E; Ramadass B; Ramprasath V
    Can J Microbiol; 2021 Feb; 67(2):101-111. PubMed ID: 33079568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary Fiber from Oat and Rye Brans Ameliorate Western Diet-Induced Body Weight Gain and Hepatic Inflammation by the Modulation of Short-Chain Fatty Acids, Bile Acids, and Tryptophan Metabolism.
    Kundi ZM; Lee JC; Pihlajamäki J; Chan CB; Leung KS; So SSY; Nordlund E; Kolehmainen M; El-Nezami H
    Mol Nutr Food Res; 2021 Jan; 65(1):e1900580. PubMed ID: 32526796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Gut Microbial Endocrine Organ in Type 2 Diabetes.
    Massey W; Brown JM
    Endocrinology; 2021 Feb; 162(2):. PubMed ID: 33373432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism.
    Pathak P; Helsley RN; Brown AL; Buffa JA; Choucair I; Nemet I; Gogonea CB; Gogonea V; Wang Z; Garcia-Garcia JC; Cai L; Temel R; Sangwan N; Hazen SL; Brown JM
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1474-H1486. PubMed ID: 32330092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder.
    Xiao S; Jiang S; Qian D; Duan J
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):589-601. PubMed ID: 31865438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation.
    Gasaly N; de Vos P; Hermoso MA
    Front Immunol; 2021; 12():658354. PubMed ID: 34122415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interactions between the intestinal microbiota and the host.
    Hertli S; Zimmermann P
    Mol Microbiol; 2022 Jun; 117(6):1297-1307. PubMed ID: 35403275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations.
    van de Wouw M; Boehme M; Lyte JM; Wiley N; Strain C; O'Sullivan O; Clarke G; Stanton C; Dinan TG; Cryan JF
    J Physiol; 2018 Oct; 596(20):4923-4944. PubMed ID: 30066368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune regulation by microbiome metabolites.
    Kim CH
    Immunology; 2018 Jun; 154(2):220-229. PubMed ID: 29569377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.