BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38821791)

  • 1. Upcycling of cellulosic textile waste with bacterial cellulose via Ioncell® technology.
    A G S Silva F; Schlapp-Hackl I; Nygren N; Heimala S; Leinonen A; Dourado F; Gama M; Hummel M
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132194. PubMed ID: 38821791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerated bacterial cellulose fibres.
    Soares Silva FAG; Meister F; Dourado F; Gama M
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127310. PubMed ID: 37813214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers.
    Haslinger S; Hummel M; Anghelescu-Hakala A; Määttänen M; Sixta H
    Waste Manag; 2019 Sep; 97():88-96. PubMed ID: 31447031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.
    Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H
    ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of Ioncell-F fibres from birch wood.
    Asaadi S; Hummel M; Ahvenainen P; Gubitosi M; Olsson U; Sixta H
    Carbohydr Polym; 2018 Feb; 181():893-901. PubMed ID: 29254051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber.
    Amaya Vergara MC; Cortés Gómez MP; Restrepo Restrepo MC; Manrique Henao J; Pereira Soto MA; Gañán Rojo PF; Castro Herazo CI; Zuluaga Gallego R
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Acetylated Ioncell-F Fibers with Low Degree of Substitution.
    Asaadi S; Kakko T; King AWT; Kilpeläinen I; Hummel M; Sixta H
    ACS Sustain Chem Eng; 2018 Jul; 6(7):9418-9426. PubMed ID: 30271692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hydration on the micromechanics of regenerated cellulose fibres from ionic liquid solutions of varying draw ratios.
    Bulota M; Michud A; Hummel M; Hughes M; Sixta H
    Carbohydr Polym; 2016 Oct; 151():1110-1114. PubMed ID: 27474661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties.
    De Silva R; Byrne N
    Carbohydr Polym; 2017 Oct; 174():89-94. PubMed ID: 28821145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of advanced cellulosic fibres.
    Woodings CR
    Int J Biol Macromol; 1995 Dec; 17(6):305-9. PubMed ID: 8789330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.
    Hong F; Guo X; Zhang S; Han SF; Yang G; Jönsson LJ
    Bioresour Technol; 2012 Jan; 104():503-8. PubMed ID: 22154745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of viscose yarn waste through one-step extraction of nanocellulose.
    Prado KS; Gonzales D; Spinacé MAS
    Int J Biol Macromol; 2019 Sep; 136():729-737. PubMed ID: 31226379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A triple-crosslinking strategy for high-performance regenerated cellulose fibers derived from waste cotton textiles.
    Huang Z; Tong A; Xing T; He A; Luo Y; Zhang Y; Wang M; Qiao S; Shi Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130779. PubMed ID: 38471604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose regeneration and spinnability from ionic liquids.
    Hauru LK; Hummel M; Nieminen K; Michud A; Sixta H
    Soft Matter; 2016 Feb; 12(5):1487-95. PubMed ID: 26660047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifilament cellulose/chitin blend yarn spun from ionic liquids.
    Mundsinger K; Müller A; Beyer R; Hermanutz F; Buchmeiser MR
    Carbohydr Polym; 2015 Oct; 131():34-40. PubMed ID: 26256157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of cellulosic fibers by enzymatic process.
    Shojaei KM; Dadashian F; Montazer M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):744-52. PubMed ID: 22161212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolution of less-processed wood fibers without bleaching in an ionic liquid: Effect of lignin condensation on wood component dissolution.
    Wang H; Hirth K; Zhu J; Ma Q; Liu C; Zhu JY
    Int J Biol Macromol; 2019 Aug; 134():740-748. PubMed ID: 31100399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filament spinning of unbleached birch kraft pulps: Effect of pulping intensity on the processability and the fiber properties.
    Ma Y; Stubb J; Kontro I; Nieminen K; Hummel M; Sixta H
    Carbohydr Polym; 2018 Jan; 179():145-151. PubMed ID: 29111037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 - Manufacturing and properties of precursor fibres.
    Trogen M; Le ND; Sawada D; Guizani C; Lourençon TV; Pitkänen L; Sixta H; Shah R; O'Neill H; Balakshin M; Byrne N; Hummel M
    Carbohydr Polym; 2021 Jan; 252():117133. PubMed ID: 33183592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.