These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38821791)

  • 1. Upcycling of cellulosic textile waste with bacterial cellulose via Ioncell® technology.
    A G S Silva F; Schlapp-Hackl I; Nygren N; Heimala S; Leinonen A; Dourado F; Gama M; Hummel M
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132194. PubMed ID: 38821791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerated bacterial cellulose fibres.
    Soares Silva FAG; Meister F; Dourado F; Gama M
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127310. PubMed ID: 37813214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers.
    Haslinger S; Hummel M; Anghelescu-Hakala A; Määttänen M; Sixta H
    Waste Manag; 2019 Sep; 97():88-96. PubMed ID: 31447031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.
    Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H
    ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of Ioncell-F fibres from birch wood.
    Asaadi S; Hummel M; Ahvenainen P; Gubitosi M; Olsson U; Sixta H
    Carbohydr Polym; 2018 Feb; 181():893-901. PubMed ID: 29254051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-dyeing of cellulose fibres with vat dyes using the Ioncell process.
    Nygren N; Schlapp-Hackl I; Heimala S; Sederholm H; Rissanen M; Hummel M
    Carbohydr Polym; 2024 Dec; 346():122578. PubMed ID: 39245479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber.
    Amaya Vergara MC; Cortés Gómez MP; Restrepo Restrepo MC; Manrique Henao J; Pereira Soto MA; Gañán Rojo PF; Castro Herazo CI; Zuluaga Gallego R
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Acetylated Ioncell-F Fibers with Low Degree of Substitution.
    Asaadi S; Kakko T; King AWT; Kilpeläinen I; Hummel M; Sixta H
    ACS Sustain Chem Eng; 2018 Jul; 6(7):9418-9426. PubMed ID: 30271692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hydration on the micromechanics of regenerated cellulose fibres from ionic liquid solutions of varying draw ratios.
    Bulota M; Michud A; Hummel M; Hughes M; Sixta H
    Carbohydr Polym; 2016 Oct; 151():1110-1114. PubMed ID: 27474661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties.
    De Silva R; Byrne N
    Carbohydr Polym; 2017 Oct; 174():89-94. PubMed ID: 28821145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of advanced cellulosic fibres.
    Woodings CR
    Int J Biol Macromol; 1995 Dec; 17(6):305-9. PubMed ID: 8789330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment.
    Hong F; Guo X; Zhang S; Han SF; Yang G; Jönsson LJ
    Bioresour Technol; 2012 Jan; 104():503-8. PubMed ID: 22154745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of viscose yarn waste through one-step extraction of nanocellulose.
    Prado KS; Gonzales D; Spinacé MAS
    Int J Biol Macromol; 2019 Sep; 136():729-737. PubMed ID: 31226379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A triple-crosslinking strategy for high-performance regenerated cellulose fibers derived from waste cotton textiles.
    Huang Z; Tong A; Xing T; He A; Luo Y; Zhang Y; Wang M; Qiao S; Shi Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130779. PubMed ID: 38471604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose regeneration and spinnability from ionic liquids.
    Hauru LK; Hummel M; Nieminen K; Michud A; Sixta H
    Soft Matter; 2016 Feb; 12(5):1487-95. PubMed ID: 26660047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifilament cellulose/chitin blend yarn spun from ionic liquids.
    Mundsinger K; Müller A; Beyer R; Hermanutz F; Buchmeiser MR
    Carbohydr Polym; 2015 Oct; 131():34-40. PubMed ID: 26256157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of cellulosic fibers by enzymatic process.
    Shojaei KM; Dadashian F; Montazer M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):744-52. PubMed ID: 22161212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolution of less-processed wood fibers without bleaching in an ionic liquid: Effect of lignin condensation on wood component dissolution.
    Wang H; Hirth K; Zhu J; Ma Q; Liu C; Zhu JY
    Int J Biol Macromol; 2019 Aug; 134():740-748. PubMed ID: 31100399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filament spinning of unbleached birch kraft pulps: Effect of pulping intensity on the processability and the fiber properties.
    Ma Y; Stubb J; Kontro I; Nieminen K; Hummel M; Sixta H
    Carbohydr Polym; 2018 Jan; 179():145-151. PubMed ID: 29111037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.