These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38821791)

  • 21. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles.
    Jeihanipour A; Karimi K; Niklasson C; Taherzadeh MJ
    Waste Manag; 2010 Dec; 30(12):2504-9. PubMed ID: 20692142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Quality Cellulosic Fibers Engineered from Cotton-Elastane Textile Waste.
    Villar L; Schlapp-Hackl I; Sánchez PB; Hummel M
    Biomacromolecules; 2024 Mar; 25(3):1942-1949. PubMed ID: 38385297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of rayon fibres from cellulosic pulps: State of the art and current developments.
    Mendes ISF; Prates A; Evtuguin DV
    Carbohydr Polym; 2021 Dec; 273():118466. PubMed ID: 34560932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation into the supramolecular properties of fibres regenerated from cotton based waste garments.
    Haule LV; Carr CM; Rigout M
    Carbohydr Polym; 2016 Jun; 144():131-9. PubMed ID: 27083802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications.
    Huang Z; Zhang Y; Xing T; He A; Luo Y; Wang M; Qiao S; Tong A; Shi Z; Liao X; Pan H; Liang Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132462. PubMed ID: 38772470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca²+ sorption on regenerated cellulose fibres.
    Fitz-Binder C; Bechtold T
    Carbohydr Polym; 2012 Oct; 90(2):937-42. PubMed ID: 22840023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymatic modification of regenerated cellulosic fabrics to improve bacteria sorption properties.
    Akbari M; Dadadashian F; Kordestani SS; Xue M; Jackson CJ
    J Biomed Mater Res A; 2013 Jun; 101(6):1734-42. PubMed ID: 23184868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wet spinning of strong cellulosic fibres with incorporation of phase change material capsules stabilized by cellulose nanocrystals.
    Samanta A; Nechyporchuk O; Bordes R
    Carbohydr Polym; 2023 Jul; 312():120734. PubMed ID: 37059568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale structure of cellulose microfibrils in regenerated cellulose fibers.
    Liu J; Sixta H; Ogawa Y; Hummel M; Sztucki M; Nishiyama Y; Burghammer M
    Carbohydr Polym; 2024 Jan; 324():121512. PubMed ID: 37985097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of cellulose textile fibers.
    Mäkelä M; Rissanen M; Sixta H
    Analyst; 2021 Dec; 146(24):7503-7509. PubMed ID: 34766958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation.
    Sun X; Lu C; Zhang W; Tian D; Zhang X
    Carbohydr Polym; 2013 Oct; 98(1):405-11. PubMed ID: 23987361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Piezo-Sensitive Fabrics from Carbon Black Containing Conductive Cellulose Fibres for Flexible Pressure Sensors.
    Ullrich J; Eisenreich M; Zimmermann Y; Mayer D; Koehne N; Tschannett JF; Mahmud-Ali A; Bechtold T
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim.
    Manian AP; Müller S; Braun DE; Pham T; Bechtold T
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Successful cultivation of edible fungi on textile waste offers a new avenue for bioremediation and potential food production.
    Hazelgrove L; Moody SC
    Sci Rep; 2024 May; 14(1):11510. PubMed ID: 38769087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current recycling strategies and high-value utilization of waste cotton.
    Lu L; Fan W; Meng X; Xue L; Ge S; Wang C; Foong SY; Tan CSY; Sonne C; Aghbashlo M; Tabatabaei M; Lam SS
    Sci Total Environ; 2023 Jan; 856(Pt 1):158798. PubMed ID: 36116663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis.
    Sanchis-Sebastiá M; Ruuth E; Stigsson L; Galbe M; Wallberg O
    Waste Manag; 2021 Feb; 121():248-254. PubMed ID: 33388647
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Possibility Routes for Textile Recycling Technology.
    Damayanti D; Wulandari LA; Bagaskoro A; Rianjanu A; Wu HS
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of Dry-Jet Wet Spinning of Regenerated Cellulose Fibers Using [mTBDH][OAc] as a Solvent.
    Fang W; Lim EY; Nieminen KL; Sixta H
    ACS Omega; 2023 Sep; 8(37):34103-34110. PubMed ID: 37744829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and properties of composite cellulose fibres with the addition of graphene oxide.
    Gabryś T; Fryczkowska B; Biniaś D; Ślusarczyk C; Fabia J
    Carbohydr Polym; 2021 Feb; 254():117436. PubMed ID: 33357909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Employing ionic liquids to deposit cellulose on PET fibers.
    Textor T; Derksen L; Gutmann JS
    Carbohydr Polym; 2016 Aug; 146():139-47. PubMed ID: 27112860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.