These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38822285)

  • 1. Interpretable machine learning model for predicting acute kidney injury in critically ill patients.
    Li X; Wang P; Zhu Y; Zhao W; Pan H; Wang D
    BMC Med Inform Decis Mak; 2024 May; 24(1):148. PubMed ID: 38822285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AKIML
    Sun T; Yue X; Zhang G; Lin Q; Chen X; Huang T; Li X; Liu W; Tao Z
    Clin Chim Acta; 2024 Jun; 559():119705. PubMed ID: 38702035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach.
    Fan Z; Jiang J; Xiao C; Chen Y; Xia Q; Wang J; Fang M; Wu Z; Chen F
    J Transl Med; 2023 Jun; 21(1):406. PubMed ID: 37349774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of interpretable machine learning for early prediction of prognosis in acute kidney injury.
    Hu C; Tan Q; Zhang Q; Li Y; Wang F; Zou X; Peng Z
    Comput Struct Biotechnol J; 2022; 20():2861-2870. PubMed ID: 35765651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning algorithm to predict mortality in critically ill patients with sepsis-associated acute kidney injury.
    Li X; Wu R; Zhao W; Shi R; Zhu Y; Wang Z; Pan H; Wang D
    Sci Rep; 2023 Mar; 13(1):5223. PubMed ID: 36997585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.
    Wei S; Zhang Y; Dong H; Chen Y; Wang X; Zhu X; Zhang G; Guo S
    BMC Pulm Med; 2023 Oct; 23(1):370. PubMed ID: 37789305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning for the prediction of acute kidney injury in patients with sepsis.
    Yue S; Li S; Huang X; Liu J; Hou X; Zhao Y; Niu D; Wang Y; Tan W; Wu J
    J Transl Med; 2022 May; 20(1):215. PubMed ID: 35562803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Construction of a predictive model for early acute kidney injury risk in intensive care unit septic shock patients based on machine learning].
    Zhang S; Tang S; Rong S; Zhu M; Liu J; Hu Q; Hao C
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Mar; 34(3):255-259. PubMed ID: 35574741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning model for predicting acute kidney injury progression in critically ill patients.
    Wei C; Zhang L; Feng Y; Ma A; Kang Y
    BMC Med Inform Decis Mak; 2022 Jan; 22(1):17. PubMed ID: 35045840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury.
    Luo XQ; Yan P; Duan SB; Kang YX; Deng YH; Liu Q; Wu T; Wu X
    Front Med (Lausanne); 2022; 9():853102. PubMed ID: 35783603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis.
    Luo XQ; Yan P; Zhang NY; Luo B; Wang M; Deng YH; Wu T; Wu X; Liu Q; Wang HS; Wang L; Kang YX; Duan SB
    Sci Rep; 2021 Oct; 11(1):20269. PubMed ID: 34642418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].
    Xiong W; Zhang L; She K; Xu G; Bai S; Liu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Nov; 34(11):1188-1193. PubMed ID: 36567564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury.
    Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L
    Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease.
    Huang D; Gong L; Wei C; Wang X; Liang Z
    Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning algorithm for predict the in-hospital mortality in critically ill patients with congestive heart failure combined with chronic kidney disease.
    Li X; Wang Z; Zhao W; Shi R; Zhu Y; Pan H; Wang D
    Ren Fail; 2024 Dec; 46(1):2315298. PubMed ID: 38357763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Personalized Prediction of Long-Term Renal Function Prognosis Following Nephrectomy Using Interpretable Machine Learning Algorithms: Case-Control Study.
    Xu L; Li C; Gao S; Zhao L; Guan C; Shen X; Zhu Z; Guo C; Zhang L; Yang C; Bu Q; Zhou B; Xu Y
    JMIR Med Inform; 2024 Sep; 12():e52837. PubMed ID: 39303280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of interpretable machine learning algorithms to predict acute kidney injury in patients with cerebral infarction in ICU.
    Lu X; Chen Y; Zhang G; Zeng X; Lai L; Qu C
    J Stroke Cerebrovasc Dis; 2024 Jul; 33(7):107729. PubMed ID: 38657830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.
    Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H
    J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.