These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
3. Semi-supervised learning framework with shape encoding for neonatal ventricular segmentation from 3D ultrasound. Szentimrey Z; Al-Hayali A; de Ribaupierre S; Fenster A; Ukwatta E Med Phys; 2024 Sep; 51(9):6134-6148. PubMed ID: 38857570 [TBL] [Abstract][Full Text] [Related]
4. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation. Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263 [TBL] [Abstract][Full Text] [Related]
5. Semi-supervised abdominal multi-organ segmentation by object-redrawing. Cho MJ; Lee JS Med Phys; 2024 Nov; 51(11):8334-8347. PubMed ID: 39167059 [TBL] [Abstract][Full Text] [Related]
6. Ultrasound carotid plaque segmentation via image reconstruction-based self-supervised learning with limited training labels. Zhou R; Ou Y; Fang X; Azarpazhooh MR; Gan H; Ye Z; Spence JD; Xu X; Fenster A Math Biosci Eng; 2023 Jan; 20(2):1617-1636. PubMed ID: 36899501 [TBL] [Abstract][Full Text] [Related]
7. SC-SSL: Self-Correcting Collaborative and Contrastive Co-Training Model for Semi-Supervised Medical Image Segmentation. Miao J; Zhou SP; Zhou GQ; Wang KN; Yang M; Zhou S; Chen Y IEEE Trans Med Imaging; 2024 Apr; 43(4):1347-1364. PubMed ID: 37995173 [TBL] [Abstract][Full Text] [Related]
8. Light mixed-supervised segmentation for 3D medical image data. Yang H; Tan T; Tegzes P; Dong X; Tamada R; Ferenczi L; Avinash G Med Phys; 2024 Jan; 51(1):167-178. PubMed ID: 37909833 [TBL] [Abstract][Full Text] [Related]
9. Self-supervised-RCNN for medical image segmentation with limited data annotation. Felfeliyan B; Forkert ND; Hareendranathan A; Cornel D; Zhou Y; Kuntze G; Jaremko JL; Ronsky JL Comput Med Imaging Graph; 2023 Oct; 109():102297. PubMed ID: 37729826 [TBL] [Abstract][Full Text] [Related]
10. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation. Xiao Z; Su Y; Deng Z; Zhang W Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398 [TBL] [Abstract][Full Text] [Related]
11. A Knowledge-Based Modality-Independent Technique for Concurrent Thigh Muscle Segmentation: Applicable to CT and MR Images. Molaie M; Zoroofi RA J Digit Imaging; 2020 Oct; 33(5):1122-1135. PubMed ID: 32588159 [TBL] [Abstract][Full Text] [Related]
12. Self-supervised contrastive learning with random walks for medical image segmentation with limited annotations. Fischer M; Hepp T; Gatidis S; Yang B Comput Med Imaging Graph; 2023 Mar; 104():102174. PubMed ID: 36640485 [TBL] [Abstract][Full Text] [Related]
13. Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images. Tayebi Arasteh S; Misera L; Kather JN; Truhn D; Nebelung S Eur Radiol Exp; 2024 Feb; 8(1):10. PubMed ID: 38326501 [TBL] [Abstract][Full Text] [Related]
14. Transformer-based unsupervised contrastive learning for histopathological image classification. Wang X; Yang S; Zhang J; Wang M; Zhang J; Yang W; Huang J; Han X Med Image Anal; 2022 Oct; 81():102559. PubMed ID: 35952419 [TBL] [Abstract][Full Text] [Related]
15. Automated segmentation of lesions and organs at risk on [ Yazdani E; Karamzadeh-Ziarati N; Cheshmi SS; Sadeghi M; Geramifar P; Vosoughi H; Jahromi MK; Kheradpisheh SR Cancer Imaging; 2024 Feb; 24(1):30. PubMed ID: 38424612 [TBL] [Abstract][Full Text] [Related]
16. Self-Supervised Learning for Few-Shot Medical Image Segmentation. Ouyang C; Biffi C; Chen C; Kart T; Qiu H; Rueckert D IEEE Trans Med Imaging; 2022 Jul; 41(7):1837-1848. PubMed ID: 35139014 [TBL] [Abstract][Full Text] [Related]
17. Precise individual muscle segmentation in whole thigh CT scans for sarcopenia assessment using U-net transformer. Kim HS; Kim H; Kim S; Cha Y; Kim JT; Kim JW; Ha YC; Yoo JI Sci Rep; 2024 Feb; 14(1):3301. PubMed ID: 38331977 [TBL] [Abstract][Full Text] [Related]
18. Deep learning for automatic segmentation of thigh and leg muscles. Agosti A; Shaqiri E; Paoletti M; Solazzo F; Bergsland N; Colelli G; Savini G; Muzic SI; Santini F; Deligianni X; Diamanti L; Monforte M; Tasca G; Ricci E; Bastianello S; Pichiecchio A MAGMA; 2022 Jun; 35(3):467-483. PubMed ID: 34665370 [TBL] [Abstract][Full Text] [Related]
19. Wearable Data From Subjects Playing Super Mario, Taking University Exams, or Performing Physical Exercise Help Detect Acute Mood Disorder Episodes via Self-Supervised Learning: Prospective, Exploratory, Observational Study. Corponi F; Li BM; Anmella G; Valenzuela-Pascual C; Mas A; Pacchiarotti I; Valentà M; Grande I; Benabarre A; Garriga M; Vieta E; Young AH; Lawrie SM; Whalley HC; Hidalgo-Mazzei D; Vergari A JMIR Mhealth Uhealth; 2024 Jul; 12():e55094. PubMed ID: 39018100 [TBL] [Abstract][Full Text] [Related]
20. A review of self-supervised, generative, and few-shot deep learning methods for data-limited magnetic resonance imaging segmentation. Liu Z; Kainth K; Zhou A; Deyer TW; Fayad ZA; Greenspan H; Mei X NMR Biomed; 2024 Aug; 37(8):e5143. PubMed ID: 38523402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]