These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38822710)

  • 1. Enhancing Photoelectrochemical Water Oxidation on WO
    Li K; Yin Y; Diao P
    Small; 2024 Oct; 20(40):e2402474. PubMed ID: 38822710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation.
    Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting.
    Zhang J; Liu Z; Liu Z
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9684-91. PubMed ID: 27032422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional core-shell heterostructure of tungsten trioxide/bismuth molybdate/cobalt phosphate for enhanced photoelectrochemical water splitting.
    Sayed MS; Mohapatra D; Baynosa ML; Shim JJ
    J Colloid Interface Sci; 2021 Sep; 598():348-357. PubMed ID: 33910070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactive Tungsten-Oxide Nanomaterials for Water-Splitting.
    Shabdan Y; Markhabayeva A; Bakranov N; Nuraje N
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32962035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO
    Lin W; Yu Y; Fang Y; Liu J; Li X; Wang J; Zhang Y; Wang C; Wang L; Yu X
    Langmuir; 2021 Jun; 37(21):6490-6497. PubMed ID: 34009993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing WO
    Wang Y; Chen C; Tian W; Xu W; Li L
    Nanotechnology; 2019 Dec; 30(49):495402. PubMed ID: 31476749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface Engineering and its Effect on WO
    Liu Y; Wygant BR; Mabayoje O; Lin J; Kawashima K; Kim JH; Li W; Li J; Mullins CB
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12639-12650. PubMed ID: 29608854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new insight into vacancy modulation in lead-doped tungsten oxide nonarchitect for photoelectrochemical water splitting: An experimental and density functional theory approach.
    Ali RB; Lee YJ; Sial QA; Duy LT; Seo H
    J Colloid Interface Sci; 2024 Jul; 665():19-31. PubMed ID: 38513405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Photoelectrochemical Performance of WO
    Nomellini C; Polo A; Mesa CA; Pastor E; Marra G; Grigioni I; Dozzi MV; Giménez S; Selli E
    ACS Appl Mater Interfaces; 2023 Nov; 15(45):52436-47. PubMed ID: 37921705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anodic nanoporous WO
    Abouelela MM; Kawamura G; Tan WK; Matsuda A
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):958-970. PubMed ID: 36152620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonochemical-driven ultrafast facile synthesis of WO
    Soltani T; Tayyebi A; Lee BK
    Ultrason Sonochem; 2019 Jan; 50():230-238. PubMed ID: 30270006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical H
    Park E; Patil SS; Lee H; Kumbhar VS; Lee K
    Nanoscale; 2021 Oct; 13(40):16932-16941. PubMed ID: 34610073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into Charge Separation in WO
    Chae SY; Lee CS; Jung H; Joo OS; Min BK; Kim JH; Hwang YJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19780-19790. PubMed ID: 28530789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Step Dry Coating of Hybrid ZnO-WO
    Malik MS; Roy D; Chun DM; Abd-Elrahim AG
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.