BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38822805)

  • 1. Surfactant Partitioning Dynamics in Freshly Generated Aerosol Droplets.
    Bain A; Lalemi L; Croll Dawes N; Miles REH; Prophet AM; Wilson KR; Bzdek BR
    J Am Chem Soc; 2024 Jun; 146(23):16028-16038. PubMed ID: 38822805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Area-to-Volume Ratio Determines Surface Tensions in Microscopic, Surfactant-Containing Droplets.
    Bain A; Ghosh K; Prisle NL; Bzdek BR
    ACS Cent Sci; 2023 Nov; 9(11):2076-2083. PubMed ID: 38033804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant.
    Lin JJ; Kristensen TB; Calderón SM; Malila J; Prisle NL
    Environ Sci Process Impacts; 2020 Feb; 22(2):271-284. PubMed ID: 31912080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Tensions of Picoliter Droplets with Sub-Millisecond Surface Age.
    Miles REH; Glerum MWJ; Boyer HC; Walker JS; Dutcher CS; Bzdek BR
    J Phys Chem A; 2019 Apr; 123(13):3021-3029. PubMed ID: 30864798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Self-Organization in Surfactant Atmospheric Aerosol Proxies.
    Milsom A; Squires AM; Ward AD; Pfrang C
    Acc Chem Res; 2023 Oct; 56(19):2555-2568. PubMed ID: 37688543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise, contactless measurements of the surface tension of picolitre aerosol droplets.
    Bzdek BR; Power RM; Simpson SH; Reid JP; Royall CP
    Chem Sci; 2016 Jan; 7(1):274-285. PubMed ID: 28758004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-liquid surfactant partitioning drives dewetting of oil from hydrophobic surfaces.
    Kim KE; Xue W; Zarzar LD
    J Colloid Interface Sci; 2024 Mar; 658():179-187. PubMed ID: 38100974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Monolayer Partitioning Scheme for Droplets of Surfactant Solutions.
    Malila J; Prisle NL
    J Adv Model Earth Syst; 2018 Dec; 10(12):3233-3251. PubMed ID: 31007837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant adsorption kinetics in microfluidics.
    Riechers B; Maes F; Akoury E; Semin B; Gruner P; Baret JC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11465-11470. PubMed ID: 27688765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet.
    Prisle NL
    Acc Chem Res; 2024 Jan; 57(2):177-187. PubMed ID: 38156821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The surface tension of surfactant-containing, finite volume droplets.
    Bzdek BR; Reid JP; Malila J; Prisle NL
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8335-8343. PubMed ID: 32238561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloud Activation Potentials for Atmospheric α-Pinene and β-Caryophyllene Ozonolysis Products.
    Gray Bé A; Upshur MA; Liu P; Martin ST; Geiger FM; Thomson RJ
    ACS Cent Sci; 2017 Jul; 3(7):715-725. PubMed ID: 28776013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilatational rheology of water-in-diesel fuel interfaces: effect of surfactant concentration and bulk-to-interface exchange.
    Narayan S; Barman S; Moravec DB; Hauser BG; Dallas AJ; Zasadzinski JA; Dutcher CS
    Soft Matter; 2021 May; 17(18):4751-4765. PubMed ID: 33861293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.
    Carlton AG; Christiansen AE; Flesch MM; Hennigan CJ; Sareen N
    Acc Chem Res; 2020 Sep; 53(9):1715-1723. PubMed ID: 32803954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental techniques to study protein-surfactant interactions: New insights into competitive adsorptions via drop subphase and interface exchange.
    Javadi A; Dowlati S; Shourni S; Miller R; Kraume M; Kopka K; Eckert K
    Adv Colloid Interface Sci; 2022 Mar; 301():102601. PubMed ID: 35114446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap.
    Narayan S; Makhnenko I; Moravec DB; Hauser BG; Dallas AJ; Dutcher CS
    Langmuir; 2020 Aug; 36(33):9827-9842. PubMed ID: 32693603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned surface anchoring of nematic droplets at miscible liquid-liquid interfaces.
    Wang X; Zhou Y; Kim YK; Miller DS; Zhang R; Martinez-Gonzalez JA; Bukusoglu E; Zhang B; Brown TM; de Pablo JJ; Abbott NL
    Soft Matter; 2017 Aug; 13(34):5714-5723. PubMed ID: 28752888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface organic monolayers control the hygroscopic growth of submicrometer particles at high relative humidity.
    Ruehl CR; Wilson KR
    J Phys Chem A; 2014 Jun; 118(22):3952-66. PubMed ID: 24866291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.