These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 38823154)
21. Low levels of per- and polyfluoroalkyl substances (PFAS) detected in drinking water in Norway, but elevated concentrations found near known sources. Grung M; Hjermann DØ; Rundberget T; Bæk K; Thomsen C; Knutsen HK; Haug LS Sci Total Environ; 2024 Oct; 947():174550. PubMed ID: 39004364 [TBL] [Abstract][Full Text] [Related]
22. Environmental distribution of per- and polyfluoroalkyl substances (PFAS) on Svalbard: Local sources and long-range transport to the Arctic. Ahrens L; Rakovic J; Ekdahl S; Kallenborn R Chemosphere; 2023 Dec; 345():140463. PubMed ID: 37852382 [TBL] [Abstract][Full Text] [Related]
23. Fate and transport of perfluoro- and polyfluoroalkyl substances including perfluorooctane sulfonamides in a managed urban water body. Nguyen TV; Reinhard M; Chen H; Gin KY Environ Sci Pollut Res Int; 2016 Jun; 23(11):10382-10392. PubMed ID: 27146547 [TBL] [Abstract][Full Text] [Related]
24. Spatiotemporal variations, sources and health risk assessment of perfluoroalkyl substances in a temperate bay adjacent to metropolis, North China. Han T; Gao L; Chen J; He X; Wang B Environ Pollut; 2020 Oct; 265(Pt A):115011. PubMed ID: 32563144 [TBL] [Abstract][Full Text] [Related]
25. Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers. Meng L; Song B; Zhong H; Ma X; Wang Y; Ma D; Lu Y; Gao W; Wang Y; Jiang G Environ Int; 2021 Nov; 156():106735. PubMed ID: 34197972 [TBL] [Abstract][Full Text] [Related]
26. Bioaccumulation of perfluoroalkyl substances in the Lake Erie food web. Ren J; Point AD; Baygi SF; Fernando S; Hopke PK; Holsen TM; Crimmins BS Environ Pollut; 2023 Jan; 317():120677. PubMed ID: 36400140 [TBL] [Abstract][Full Text] [Related]
27. Ski wax use contributes to environmental contamination by per- and polyfluoroalkyl substances. Carlson GL; Tupper S Chemosphere; 2020 Dec; 261():128078. PubMed ID: 33113667 [TBL] [Abstract][Full Text] [Related]
28. Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China. Pan CG; Zhao JL; Liu YS; Zhang QQ; Chen ZF; Lai HJ; Peng FJ; Liu SS; Ying GG Ecotoxicol Environ Saf; 2014 Sep; 107():192-9. PubMed ID: 25011114 [TBL] [Abstract][Full Text] [Related]
29. Bioconcentration of Per- and Polyfluoroalkyl Substances and Precursors in Fathead Minnow Tissues Environmentally Exposed to Aqueous Film-Forming Foam-Contaminated Waters. Hill NI; Becanova J; Vojta S; Barber LB; LeBlanc DR; Vajda AM; Pickard HM; Lohmann R Environ Toxicol Chem; 2024 Aug; 43(8):1795-1806. PubMed ID: 38896102 [TBL] [Abstract][Full Text] [Related]
30. Background concentrations and spatial distribution of PFAS in surface waters and sediments of the greater Melbourne area, Australia. Paige T; De Silva T; Buddhadasa S; Prasad S; Nugegoda D; Pettigrove V Chemosphere; 2024 Feb; 349():140791. PubMed ID: 38029939 [TBL] [Abstract][Full Text] [Related]
31. Survey design for quantifying perfluoroalkyl acid concentrations in fish, prawns and crabs to assess human health risks. Taylor MD Sci Total Environ; 2019 Feb; 652():59-65. PubMed ID: 30359802 [TBL] [Abstract][Full Text] [Related]
32. Prevalence of per- and polyfluoroalkyl substances (PFASs) in marine seafood from the Gulf of Guinea. Ekperusi AO; Bely N; Pollono C; Mahé K; Munschy C; Aminot Y Chemosphere; 2023 Sep; 335():139110. PubMed ID: 37270038 [TBL] [Abstract][Full Text] [Related]
33. First report of perfluoroalkyl acids (PFAAs) in the Indus Drainage System: Occurrence, source and environmental risk. Khan K; Younas M; Zhou Y; Sharif HMA; Li X; Yaseen M; Ibrahim SM; Baninla Y; Cao X; Lu Y Environ Res; 2022 Aug; 211():113113. PubMed ID: 35283080 [TBL] [Abstract][Full Text] [Related]
34. Sulfluramid use in Brazilian agriculture: A source of per- and polyfluoroalkyl substances (PFASs) to the environment. Nascimento RA; Nunoo DBO; Bizkarguenaga E; Schultes L; Zabaleta I; Benskin JP; Spanó S; Leonel J Environ Pollut; 2018 Nov; 242(Pt B):1436-1443. PubMed ID: 30142559 [TBL] [Abstract][Full Text] [Related]
35. Perfluorinated compounds in seafood from coastal areas in China. Wu Y; Wang Y; Li J; Zhao Y; Guo F; Liu J; Cai Z Environ Int; 2012 Jul; 42():67-71. PubMed ID: 21550116 [TBL] [Abstract][Full Text] [Related]
36. Bioaccumulation and trophic magnification of emerging and legacy per- and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web. Munoz G; Mercier L; Duy SV; Liu J; Sauvé S; Houde M Environ Pollut; 2022 Sep; 309():119739. PubMed ID: 35817301 [TBL] [Abstract][Full Text] [Related]
37. Human exposure to per- and polyfluoroalkyl substances (PFAS) via the consumption of fish leads to exceedance of safety thresholds. Langberg HA; Breedveld GD; Kallenborn R; Ali AM; Choyke S; McDonough CA; Higgins CP; Jenssen BM; Jartun M; Allan I; Hamers T; Hale SE Environ Int; 2024 Aug; 190():108844. PubMed ID: 38941943 [TBL] [Abstract][Full Text] [Related]
38. Per- and polyfluoroalkyl substances in Chinese commercially available red swamp crayfish (Procambarus clarkii): Implications for human exposure and health risk assessment. Bian J; Xu J; Guo Z; Li X; Ge Y; Tang X; Lu B; Chen X; Lu S Environ Pollut; 2024 Sep; 356():124369. PubMed ID: 38876375 [TBL] [Abstract][Full Text] [Related]
39. Large-scale assessment of exposure to legacy and emerging per- and polyfluoroalkyl substances in China's shorebirds. Sun J; Cheng Y; Song Z; Ma S; Xing L; Wang K; Huang C; Li D; Chu J; Liu Y Environ Res; 2023 Jul; 229():115946. PubMed ID: 37080273 [TBL] [Abstract][Full Text] [Related]
40. Characteristic distribution patterns of perfluoroalkyl substances in soils according to land-use types. Sim W; Park H; Yoon JK; Kim JI; Oh JE Chemosphere; 2021 Aug; 276():130167. PubMed ID: 33725626 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]