These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 38823255)
1. Clinical translation of polycaprolactone-based tissue engineering scaffolds, fabricated via additive manufacturing: A review of their craniofacial applications. Kirmanidou Y; Chatzinikolaidou M; Michalakis K; Tsouknidas A Biomater Adv; 2024 Sep; 162():213902. PubMed ID: 38823255 [TBL] [Abstract][Full Text] [Related]
2. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
3. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857 [TBL] [Abstract][Full Text] [Related]
6. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering. Ansari MAA; Makwana P; Dhimmar B; Vasita R; Jain PK; Nanda HS J Mater Chem B; 2024 Jul; 12(28):6886-6904. PubMed ID: 38912967 [TBL] [Abstract][Full Text] [Related]
7. Additively manufactured BaTiO Mancuso E; Shah L; Jindal S; Serenelli C; Tsikriteas ZM; Khanbareh H; Tirella A Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112192. PubMed ID: 34082989 [TBL] [Abstract][Full Text] [Related]
8. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration. Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683 [TBL] [Abstract][Full Text] [Related]
9. 3D-Printed Demineralized Bone Matrix-Based Conductive Scaffolds Combined with Electrical Stimulation for Bone Tissue Engineering Applications. Dixon DT; Landree EN; Gomillion CT ACS Appl Bio Mater; 2024 Jul; 7(7):4366-4378. PubMed ID: 38905196 [TBL] [Abstract][Full Text] [Related]
11. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Zhang X; Du X; Li D; Ao R; Yu B; Yu B J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120 [TBL] [Abstract][Full Text] [Related]
12. Assessment of PCL/carbon material scaffolds for bone regeneration. Wang W; Huang B; Byun JJ; Bártolo P J Mech Behav Biomed Mater; 2019 May; 93():52-60. PubMed ID: 30769234 [TBL] [Abstract][Full Text] [Related]
13. The potential bone regeneration effects of leptin- and osteolectin-coated 3D-printed PCL scaffolds: an Kim YR; Yun EB; Ryu DI; Kim BH; Kim JS; Kim YS; Kang JH; Cho EH; Koh JT; Lim HP; Park C; Lee BN Biomed Mater; 2024 May; 19(4):. PubMed ID: 38688311 [TBL] [Abstract][Full Text] [Related]
14. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering. Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering. Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041 [TBL] [Abstract][Full Text] [Related]
17. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects. Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Poh PSP; Hutmacher DW; Holzapfel BM; Solanki AK; Stevens MM; Woodruff MA Acta Biomater; 2016 Jan; 30():319-333. PubMed ID: 26563472 [TBL] [Abstract][Full Text] [Related]
19. Advances in additive manufacturing of polycaprolactone based scaffolds for bone regeneration. Murab S; Herold S; Hawk T; Snyder A; Espinal E; Whitlock P J Mater Chem B; 2023 Aug; 11(31):7250-7279. PubMed ID: 37249247 [TBL] [Abstract][Full Text] [Related]
20. 3D printed macroporous scaffolds of PCL and inulin-g-P(D,L)LA for bone tissue engineering applications. Tommasino C; Auriemma G; Sardo C; Alvarez-Lorenzo C; Garofalo E; Morello S; Falcone G; Aquino RP Int J Pharm; 2023 Jun; 641():123093. PubMed ID: 37268029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]