These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 38823255)
21. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction. Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096 [TBL] [Abstract][Full Text] [Related]
22. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810 [TBL] [Abstract][Full Text] [Related]
23. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Dong Q; Zhang M; Zhou X; Shao Y; Li J; Wang L; Chu C; Xue F; Yao Q; Bai J Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112372. PubMed ID: 34579891 [TBL] [Abstract][Full Text] [Related]
24. Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. Backes EH; Harb SV; Beatrice CAG; Shimomura KMB; Passador FR; Costa LC; Pessan LA J Biomed Mater Res B Appl Biomater; 2022 Jun; 110(6):1479-1503. PubMed ID: 34918463 [TBL] [Abstract][Full Text] [Related]
25. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Arif ZU; Khalid MY; Noroozi R; Sadeghianmaryan A; Jalalvand M; Hossain M Int J Biol Macromol; 2022 Oct; 218():930-968. PubMed ID: 35896130 [TBL] [Abstract][Full Text] [Related]
26. Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation. Pazarçeviren AE; Dikmen T; Altunbaş K; Yaprakçı V; Erdemli Ö; Keskin D; Tezcaner A J Tissue Eng Regen Med; 2020 Jan; 14(1):3-15. PubMed ID: 31475790 [TBL] [Abstract][Full Text] [Related]
27. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration. Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303 [TBL] [Abstract][Full Text] [Related]
28. Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds. Karimzadeh Bardeei L; Seyedjafari E; Hossein G; Nabiuni M; Majles Ara MH; Salber J Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638673 [TBL] [Abstract][Full Text] [Related]
29. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy. Bojedla SSR; Yeleswarapu S; Alwala AM; Nikzad M; Masood SH; Riza S; Pati F ACS Appl Bio Mater; 2022 Sep; 5(9):4465-4479. PubMed ID: 35994743 [TBL] [Abstract][Full Text] [Related]
30. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration. Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188 [TBL] [Abstract][Full Text] [Related]
31. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
32. A xenogeneic extracellular matrix-based 3D printing scaffold modified by ceria nanoparticles for craniomaxillofacial hard tissue regeneration via osteo-immunomodulation. Chen J; Huang Y; Tang H; Qiao X; Sima X; Guo W Biomed Mater; 2024 May; 19(4):. PubMed ID: 38756029 [TBL] [Abstract][Full Text] [Related]
33. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025 [TBL] [Abstract][Full Text] [Related]
34. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
35. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380 [TBL] [Abstract][Full Text] [Related]
36. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199 [TBL] [Abstract][Full Text] [Related]
38. Process-Structure-Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds. Gerdes S; Mostafavi A; Ramesh S; Memic A; Rivero IV; Rao P; Tamayol A Tissue Eng Part A; 2020 Mar; 26(5-6):279-291. PubMed ID: 31964254 [TBL] [Abstract][Full Text] [Related]
39. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration. Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532 [TBL] [Abstract][Full Text] [Related]
40. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]