These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38823610)
1. Heavy metal accumulation in root and shoot tapioca plant biomass grown in agriculture land situated around the magnesite mine tailings. Pugazhendhi A; Govindasamy C; Sharma A Environ Res; 2024 Sep; 257():119287. PubMed ID: 38823610 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
3. [Pollution Properties and Ecological Risk Assessment of Heavy Metals in Farmland Soils and Crops Around a Typical Manganese Mining Area]. Huang ZT; Yi SW; Chen BB; Peng R; Shi XF; Li F Huan Jing Ke Xue; 2022 Feb; 43(2):975-984. PubMed ID: 35075871 [TBL] [Abstract][Full Text] [Related]
4. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Saadani O; Fatnassi IC; Chiboub M; Abdelkrim S; Barhoumi F; Jebara M; Jebara SH Ecotoxicol Environ Saf; 2016 Aug; 130():263-9. PubMed ID: 27151677 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sun Z; Xie X; Wang P; Hu Y; Cheng H Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905 [TBL] [Abstract][Full Text] [Related]
6. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Ruiz E; Rodríguez L; Alonso-Azcárate J Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427 [TBL] [Abstract][Full Text] [Related]
7. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
8. Intercropping with sunflower and inoculation with arbuscular mycorrhizal fungi promotes growth of garlic chive in metal-contaminated soil at a WEEE-recycling site. Zhang Y; Hu J; Bai J; Qin H; Wang J; Wang J; Lin X Ecotoxicol Environ Saf; 2019 Jan; 167():376-384. PubMed ID: 30366271 [TBL] [Abstract][Full Text] [Related]
9. Concentrations and health risks of heavy metals in soils and crops around the Pingle manganese (Mn) mine area in Guangxi Province, China. Liu K; Fan L; Li Y; Zhou Z; Chen C; Chen B; Yu F Environ Sci Pollut Res Int; 2018 Oct; 25(30):30180-30190. PubMed ID: 30151790 [TBL] [Abstract][Full Text] [Related]
10. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Shen ZJ; Xu C; Chen YS; Zhang Z Ecotoxicol Environ Saf; 2017 Sep; 143():19-27. PubMed ID: 28494313 [TBL] [Abstract][Full Text] [Related]
11. [Accumulation and Transport Characteristics of Cd, Pb, Zn, and As in Different Maize Varieties]. Ren C; Xiao JH; Li JT; Du QQ; Zhu LW; Wang H; Zhu RZ; Zhao HY Huan Jing Ke Xue; 2022 Aug; 43(8):4232-4252. PubMed ID: 35971720 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal localisation in mycorrhizas of Epipactis atrorubens (Hoffm.) Besser (Orchidaceae) from zinc mine tailings. Jurkiewicz A; Turnau K; Mesjasz-Przybyłowicz J; Przybyłowicz W; Godzik B Protoplasma; 2001; 218(3-4):117-24. PubMed ID: 11770428 [TBL] [Abstract][Full Text] [Related]
13. [Bioaccumulation and Translocation Characteristics of Heavy Metals in a Soil-Maize System in Reclaimed Land and Surrounding Areas of Typical Vanadium-Titanium Magnetite Tailings]. Sun HY; Wei XF; Sun XM; Jia FC; Li DJ; Li J Huan Jing Ke Xue; 2021 Mar; 42(3):1166-1176. PubMed ID: 33742913 [TBL] [Abstract][Full Text] [Related]
14. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Singh RP; Agrawal M Chemosphere; 2007 May; 67(11):2229-40. PubMed ID: 17289111 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
16. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Yang B; Shu WS; Ye ZH; Lan CY; Wong MH Chemosphere; 2003 Sep; 52(9):1593-600. PubMed ID: 12867192 [TBL] [Abstract][Full Text] [Related]
17. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam. Martinez RE; Marquez JE; Hòa HT; Gieré R Environ Sci Pollut Res Int; 2013 Nov; 20(11):7686-98. PubMed ID: 23990254 [TBL] [Abstract][Full Text] [Related]
18. Temporal variations in absorption and translocation of heavy metal(loid)s in pak choi (Brassica rapa L.) under open-field and greenhouse cultivation. Cao C; Liang BY; Yang Y; Ren D; Tang QH; Wang CW; Li Z; Wang J Ecotoxicol Environ Saf; 2024 Aug; 281():116667. PubMed ID: 38964068 [TBL] [Abstract][Full Text] [Related]
19. Investigation of plant species and their heavy metal accumulation in manganese mine tailings in Pingle Mn mine, China. Liu K; Zhang H; Liu Y; Li Y; Yu F Environ Sci Pollut Res Int; 2020 Jun; 27(16):19933-19945. PubMed ID: 32232756 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) grown in hydroponic culture. Sipos G; Solti A; Czech V; Vashegyi I; Tóth B; Cseh E; Fodor F Plant Physiol Biochem; 2013 Jul; 68():96-103. PubMed ID: 23669138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]