These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38823615)

  • 1. Predicting concrete strength early age using a combination of machine learning and electromechanical impedance with nano-enhanced sensors.
    Ju H; Xing L; Ali AH; El-Arab IE; Elshekh AEA; Abbas M; Abdullah N; Elattar S; Hashmi A; Ali E; Assilzadeh H
    Environ Res; 2024 Oct; 258():119248. PubMed ID: 38823615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy Logic-Based and Nondestructive Concrete Strength Evaluation Using Modified Carbon Nanotubes as a Hybrid PZT-CNT Sensor.
    Tareen N; Kim J; Kim WK; Park S
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis and Strength Estimation of Fresh Concrete Based on Ultrasonic Wave Propagation and Maturity Using Smart Temperature and PZT Sensors.
    Tareen N; Kim J; Kim WK; Park S
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31450825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel CNN-LSTM Hybrid Model for Prediction of Electro-Mechanical Impedance Signal Based Bond Strength Monitoring.
    Parida L; Moharana S; Ferreira VM; Giri SK; Ascensão G
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete.
    Jagadesh P; Khan AH; Priya BS; Asheeka A; Zoubir Z; Magbool HM; Alam S; Bakather OY
    PLoS One; 2024; 19(5):e0303101. PubMed ID: 38739642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.
    Kim J; Lee C; Park S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures.
    Na WS; Baek J
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29695067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of ANN architecture for predicting the compressive strength of concrete containing GGBFS.
    Tran VQ; Mai HT; Nguyen TA; Ly HB
    PLoS One; 2021; 16(12):e0260847. PubMed ID: 34860842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bond-Slip Monitoring of Concrete Structures Using Smart Sensors-A Review.
    Huo L; Cheng H; Kong Q; Chen X
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30862071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the Impact of Sustained Load and Temperature on the Performance of the Electromechanical Impedance Technique through Multilevel Machine Learning and FBG Sensors.
    Perera R; Torres L; Díaz FJ; Barris C; Baena M
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a Mass Concrete Strength-Monitoring Method Using Barium Titanate-Bismuth Ferrite/Polyvinylidene Fluoride Nanocomposite Piezoelectric Sensors with Temperature Stability.
    Lin G; Lu D; Cui B; Lin A; Liu M; Ye Y
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Health monitoring of bacterial concrete structure under dynamic loading using electro-mechanical impedance technique: a numerical approach.
    Maurya KK; Rawat A; Shanker R
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25382-25401. PubMed ID: 35836050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An EMI-Based Clustering for Structural Health Monitoring of NSM FRP Strengthening Systems.
    Perera R; Torres L; Ruiz A; Barris C; Baena M
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring.
    Baptista FG; Budoya DE; de Almeida VA; Ulson JA
    Sensors (Basel); 2014 Jan; 14(1):1208-27. PubMed ID: 24434878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Depth Analysis of Cement-Based Material Incorporating Metakaolin Using Individual and Ensemble Machine Learning Approaches.
    Bulbul AMR; Khan K; Nafees A; Amin MN; Ahmad W; Usman M; Nazar S; Arab AMA
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment.
    Latif SD
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete.
    Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating the Capsule-like Smart Aggregate-Based EMI Technique with Deep Learning for Stress Assessment in Concrete.
    Ta QB; Pham QQ; Pham NL; Kim JT
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric Sensor-Embedded Smart Rock for Damage Monitoring in a Prestressed Anchorage Zone.
    Pham QQ; Dang NL; Kim JT
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless Concrete Strength Monitoring of Wind Turbine Foundations.
    Perry M; Fusiek G; Niewczas P; Rubert T; McAlorum J
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.