These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38823736)

  • 1. Pectin-associated immune responses in plant-microbe interactions: A review.
    Saberi Riseh R; Gholizadeh Vazvani M; Taheri A; Kennedy JF
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):132790. PubMed ID: 38823736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
    Bacete L; Mélida H; Miedes E; Molina A
    Plant J; 2018 Feb; 93(4):614-636. PubMed ID: 29266460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection.
    Wang Y; Wang Y
    Mol Plant Microbe Interact; 2018 Jan; 31(1):6-12. PubMed ID: 29090656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intricacies of plants' innate immune responses and their dynamic relationship with fungi: A review.
    Tripathi A; Pandey VK; Jha AK; Srivastava S; Jakhar S; Vijay ; Singh G; Rustagi S; Malik S; Choudhary P
    Microbiol Res; 2024 Aug; 285():127758. PubMed ID: 38781787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jasmonate-dependent modifications of the pectin matrix during potato development function as a defense mechanism targeted by Dickeya dadantii virulence factors.
    Taurino M; Abelenda JA; Río-Alvarez I; Navarro C; Vicedo B; Farmaki T; Jiménez P; García-Agustín P; López-Solanilla E; Prat S; Rojo E; Sánchez-Serrano JJ; Sanmartín M
    Plant J; 2014 Feb; 77(3):418-29. PubMed ID: 24286390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases.
    Lionetti V; Cervone F; Bellincampi D
    J Plant Physiol; 2012 Nov; 169(16):1623-30. PubMed ID: 22717136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana.
    Bethke G; Thao A; Xiong G; Li B; Soltis NE; Hatsugai N; Hillmer RA; Katagiri F; Kliebenstein DJ; Pauly M; Glazebrook J
    Plant Cell; 2016 Feb; 28(2):537-56. PubMed ID: 26813622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Pectin Properties to Track Cell Wall Alterations During Plant-Pathogen Interactions.
    Bethke G; Glazebrook J
    Methods Mol Biol; 2019; 1991():55-60. PubMed ID: 31041762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses.
    Souza CA; Li S; Lin AZ; Boutrot F; Grossmann G; Zipfel C; Somerville SC
    Plant Physiol; 2017 Apr; 173(4):2383-2398. PubMed ID: 28242654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxin crosstalk to plant immune networks: a plant-pathogen interaction perspective.
    Naseem M; Srivastava M; Tehseen M; Ahmed N
    Curr Protein Pept Sci; 2015; 16(5):389-94. PubMed ID: 25824384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endocytosis in plant-microbe interactions.
    Leborgne-Castel N; Adam T; Bouhidel K
    Protoplasma; 2010 Dec; 247(3-4):177-93. PubMed ID: 20814704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three Pectin Methylesterase Inhibitors Protect Cell Wall Integrity for Arabidopsis Immunity to
    Lionetti V; Fabri E; De Caroli M; Hansen AR; Willats WG; Piro G; Bellincampi D
    Plant Physiol; 2017 Mar; 173(3):1844-1863. PubMed ID: 28082716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogen perception and signaling in plant immunity.
    Dodds PN; Chen J; Outram MA
    Plant Cell; 2024 May; 36(5):1465-1481. PubMed ID: 38262477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The case for the defense: plants versus Pseudomonas syringae.
    Gimenez-Ibanez S; Rathjen JP
    Microbes Infect; 2010 Jun; 12(6):428-37. PubMed ID: 20214999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.
    Henry E; Yadeta KA; Coaker G
    New Phytol; 2013 Sep; 199(4):908-15. PubMed ID: 23909802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell wall traits that influence plant development, immunity, and bioconversion.
    De Lorenzo G; Ferrari S; Giovannoni M; Mattei B; Cervone F
    Plant J; 2019 Jan; 97(1):134-147. PubMed ID: 30548980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell wall-associated effectors of plant-colonizing fungi.
    Tanaka S; Kahmann R
    Mycologia; 2021; 113(2):247-260. PubMed ID: 33534652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plants and pathogens: putting infection strategies and defence mechanisms on the map.
    Faulkner C; Robatzek S
    Curr Opin Plant Biol; 2012 Dec; 15(6):699-707. PubMed ID: 22981427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant cell wall-mediated disease resistance: Current understanding and future perspectives.
    Molina A; Jordá L; Torres MÁ; Martín-Dacal M; Berlanga DJ; Fernández-Calvo P; Gómez-Rubio E; Martín-Santamaría S
    Mol Plant; 2024 May; 17(5):699-724. PubMed ID: 38594902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How plants recognize pathogens and defend themselves.
    de Wit PJ
    Cell Mol Life Sci; 2007 Nov; 64(21):2726-32. PubMed ID: 17876517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.