BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38823833)

  • 21. Native vs. damaged milk fat globules: membrane properties affect the viscoelasticity of milk gels.
    Michalski MC; Cariou R; Michel F; Garnier C
    J Dairy Sci; 2002 Oct; 85(10):2451-61. PubMed ID: 12416796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Composition of interfacial layers in complex food emulsions before and after aeration: effect of egg to milk protein ratio.
    Martinet V; Valentini C; Casalinho J; Schorsch C; Vaslin S; Courthaudon JL
    J Dairy Sci; 2005 Jan; 88(1):30-9. PubMed ID: 15591364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using the USAXS technique to reveal the fat globule and casein micelle structures of bovine dairy products.
    Peyronel F; Marangoni AG; Pink DA
    Food Res Int; 2020 Mar; 129():108846. PubMed ID: 32036933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of acidification and heating on the rheological properties of oil-water interfaces with adsorbed milk proteins.
    Mellema M; Isenbart JG
    J Dairy Sci; 2004 Sep; 87(9):2769-78. PubMed ID: 15375034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase stability of concentrated dairy products.
    ten Grotenhuis E; Tuinier R; de Kruif CG
    J Dairy Sci; 2003 Mar; 86(3):764-9. PubMed ID: 12703611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of high pressure--low temperature treatments on structural characteristics of whey proteins and micellar caseins.
    Baier D; Purschke B; Schmitt C; Rawel HM; Knorr D
    Food Chem; 2015 Nov; 187():354-63. PubMed ID: 25977037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing Gastric-Stable Adsorption Layers by Whey Protein-Pectin Complexation at the Oil-Water Interface.
    Li H; Van der Meeren P
    J Agric Food Chem; 2023 May; 71(18):7109-7118. PubMed ID: 37126566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of basil seed gum and κ-carrageenan on the rheological, textural, and structural properties of whipped cream.
    Biglarian N; Rafe A; Shahidi SA
    J Sci Food Agric; 2021 Nov; 101(14):5851-5860. PubMed ID: 33788968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lubrication properties of model dairy beverages: Effect of the characteristics of protein dispersions and emulsions.
    Ji L; Cornacchia L; Sala G; Scholten E
    Food Res Int; 2022 Jul; 157():111209. PubMed ID: 35761531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Glucose and Corn Syrup on the Physical Characteristics and Whipping Properties of Vegetable-Fat Based Whipped Creams.
    Zeng Y; Zeng D; Liu T; Cai Y; Li Y; Zhao M; Zhao Q
    Foods; 2022 Apr; 11(9):. PubMed ID: 35563918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physicochemical stability and gastrointestinal fate of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-low acyl gellan gum conjugates.
    Nooshkam M; Varidi M
    Food Chem; 2021 Jun; 347():129079. PubMed ID: 33493834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of pulsed electric field intensity on the cream separation efficiency from bovine milk and physico-chemical properties of the cream.
    Walkling-Ribeiro M; Jacob T; Ahrné L
    Food Res Int; 2024 Mar; 180():114074. PubMed ID: 38395577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan.
    Xu D; Aihemaiti Z; Cao Y; Teng C; Li X
    Food Chem; 2016 Jul; 202():156-64. PubMed ID: 26920280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Confined flow behavior under high shear rates and stability of oil/water high internal phase emulsions (HIPEs) stabilized by whey protein isolate: Role of protein concentration and pH.
    Zhou B; Drusch S; Hogan SA
    Food Res Int; 2022 Oct; 160():111674. PubMed ID: 36076385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusing wave spectroscopy study of the colloidal interactions occurring between casein micelles and emulsion droplets: comparison to hard-sphere behavior.
    Gaygadzhiev Z; Corredig M; Alexander M
    Langmuir; 2008 Apr; 24(8):3794-800. PubMed ID: 18324850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the emulsion droplet type on the rheological characteristics and microstructure of rennet gels from reconstituted milk.
    Gaygadzhiev Z; Hill A; Corredig M
    J Dairy Res; 2009 Aug; 76(3):349-55. PubMed ID: 19519978
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interfacial properties, thin film stability and foam stability of casein micelle dispersions.
    Chen M; Sala G; Meinders MB; van Valenberg HJ; van der Linden E; Sagis LM
    Colloids Surf B Biointerfaces; 2017 Jan; 149():56-63. PubMed ID: 27721166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking.
    Wu J; Shi M; Li W; Zhao L; Wang Z; Yan X; Norde W; Li Y
    Colloids Surf B Biointerfaces; 2015 Mar; 127():96-104. PubMed ID: 25660092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of aqueous phase composition and hydrophilic emulsifier type on the stability of W/O/W emulsions.
    Chevalier RC; Gomes A; Cunha RL
    Food Res Int; 2022 Jun; 156():111123. PubMed ID: 35651003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Internal Phase Emulsion Gels Stabilized by Natural Casein peptides.
    Wakita K; Imura T
    J Oleo Sci; 2018 Dec; 67(12):1579-1584. PubMed ID: 30429446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.