These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38823863)

  • 1. Impact of pilot-scale microfluidization on soybean protein structure in powder and solution.
    Diana Kerezsi A; Jacquet N; Lelia Pop O; Othmeni I; Figula A; Francis F; Karamoko G; Karoui R; Blecker C
    Food Res Int; 2024 Jul; 188():114466. PubMed ID: 38823863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dynamic high-pressure microfluidization treatment on soybean protein isolate-rutin non-covalent complexes.
    Yu D; Xing K; Wang N; Wang X; Zhang S; Du J; Zhang L
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129217. PubMed ID: 38184043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Modified Processing Methods on Structural Changes of Black Soybean Protein Isolate.
    Zhang Y; Yin Y; Lu S; Yao X; Zheng X; Zhao R; Li Z; Shen H; Zhang S
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30142966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of physicochemical properties and IgE-binding of soybean proteins derived from the HHP-treated seeds.
    Yang H; Yang A; Gao J; Chen H
    J Food Sci; 2014 Nov; 79(11):C2157-63. PubMed ID: 25307857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soybean isolate protein complexes with different concentrations of inulin by ultrasound treatment: Structural and functional properties.
    Wang M; Yang S; Sun N; Zhu T; Lian Z; Dai S; Xu J; Tong X; Wang H; Jiang L
    Ultrason Sonochem; 2024 May; 105():106864. PubMed ID: 38581796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drying method determines the structure and the solubility of microfluidized pea globulin aggregates.
    Oliete B; Yassine SA; Cases E; Saurel R
    Food Res Int; 2019 May; 119():444-454. PubMed ID: 30884676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drying methods affect physicochemical and functional properties of quinoa protein isolate.
    Shen Y; Tang X; Li Y
    Food Chem; 2021 Mar; 339():127823. PubMed ID: 32829242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of dynamic high pressure microfluidization treatment on the microstructure of ovalbumin].
    Tu ZC; Wang H; Liu GX; Chen G; Dou YX; Zhang XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):495-8. PubMed ID: 20384153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate.
    Hu X; Zhao M; Sun W; Zhao G; Ren J
    J Agric Food Chem; 2011 Aug; 59(16):8886-94. PubMed ID: 21744872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels.
    Zhang M; Yang Y; Acevedo NC
    Food Chem; 2020 Jul; 318():126421. PubMed ID: 32126461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of High-Pressure Microfluidization Treatment on the Foaming Properties of Pea Albumin Aggregates.
    Djemaoune Y; Cases E; Saurel R
    J Food Sci; 2019 Aug; 84(8):2242-2249. PubMed ID: 31329282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of high pressure on the conformation of freeze-dried soy protein isolate: a FTIR spectroscopic study].
    Tang CH; Ma CY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1237-40. PubMed ID: 19650461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of microfluidization on the physical, microbial, chemical, and coagulation properties of milk.
    Bucci AJ; Van Hekken DL; Tunick MH; Renye JA; Tomasula PM
    J Dairy Sci; 2018 Aug; 101(8):6990-7001. PubMed ID: 29778477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment.
    Huang L; Ding X; Dai C; Ma H
    Food Chem; 2017 Oct; 232():727-732. PubMed ID: 28490134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of preheat treatment and syringic acid modification on the structure, functional properties, and stability of black soybean protein isolate.
    Miao Q; He Y; Sun H; Olajide TM; Yang M; Han B; Liao X; Huang J
    J Food Sci; 2024 Jun; 89(6):3577-3590. PubMed ID: 38720591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of transglutaminase glycosylated soy protein isolate on its structure and interfacial properties.
    Zhang A; Cui Q; Yu Z; Wang X; Zhao XH
    J Sci Food Agric; 2021 Sep; 101(12):5097-5105. PubMed ID: 33576008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and application of freeze dried biocomposite coating powders from sunflower oil and soy protein or whey protein isolates.
    Erdem BG; Kaya S
    Food Chem; 2021 Mar; 339():127976. PubMed ID: 33152855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swirling cavitation improves the emulsifying properties of commercial soy protein isolate.
    Yang F; Liu X; Ren X; Huang Y; Huang C; Zhang K
    Ultrason Sonochem; 2018 Apr; 42():471-481. PubMed ID: 29429693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different dry heating temperatures on the spatial structure and amino acid residue side-chain oxidative modification of soybean isolated proteins.
    Wen P; Xia C; Zhang L; Chen Y; Xu H; Cui G; Wang J
    Food Chem; 2023 Mar; 405(Pt A):134795. PubMed ID: 36371833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of l-cysteine-induced fibrous structural changes of soybean protein at different high-moisture extrusion zones.
    Gao Y; Lian W; Zhang H; Zhu Y; Huang Y; Liu L; Zhu X
    Int J Biol Macromol; 2024 May; 268(Pt 1):131621. PubMed ID: 38631588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.