These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38823920)
21. Poly(hydroxyethyl methacrylate-co-methacrylated-beta-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. dos Santos JF; Couceiro R; Concheiro A; Torres-Labandeira JJ; Alvarez-Lorenzo C Acta Biomater; 2008 May; 4(3):745-55. PubMed ID: 18291738 [TBL] [Abstract][Full Text] [Related]
22. Benchmarking to the Gold Standard: Hyaluronan-Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. Baker AEG; Bahlmann LC; Tam RY; Liu JC; Ganesh AN; Mitrousis N; Marcellus R; Spears M; Bartlett JMS; Cescon DW; Bader GD; Shoichet MS Adv Mater; 2019 Sep; 31(36):e1901166. PubMed ID: 31322299 [TBL] [Abstract][Full Text] [Related]
23. Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties. Abdallah M; Martin M; El Tahchi MR; Balme S; Faour WH; Varga B; Cloitre T; Páll O; Cuisinier FJG; Gergely C; Bassil MJ; Bechelany M ACS Appl Mater Interfaces; 2019 Sep; 11(36):32623-32632. PubMed ID: 31424195 [TBL] [Abstract][Full Text] [Related]
24. A hydrogel with supramolecular surface functionalization for cancer cell capture and multicellular spheroid growth and release. Wen Y; Mensah NN; Song X; Zhu J; Tan WS; Chen X; Li J Chem Commun (Camb); 2022 Jan; 58(5):681-684. PubMed ID: 34919108 [TBL] [Abstract][Full Text] [Related]
25. Self-healing supramolecular hydrogels through host-guest interaction between cyclodextrin and carborane. Xiong H; Li Y; Ye H; Huang G; Zhou D; Huang Y J Mater Chem B; 2020 Dec; 8(45):10309-10313. PubMed ID: 33174586 [TBL] [Abstract][Full Text] [Related]
26. An in situ mechanical adjustable double crosslinking hyaluronic acid/poly-lysine hydrogel matrix: Fabrication, characterization and cell morphology. Guo J; Wei C; Wang X; Hou Y; Guo W Int J Biol Macromol; 2021 Jun; 180():234-241. PubMed ID: 33737180 [TBL] [Abstract][Full Text] [Related]
28. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility. Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044 [TBL] [Abstract][Full Text] [Related]
29. Impact of hydrogel biophysical properties on tumor spheroid growth and drug response. Cameron AP; Gao S; Liu Y; Zhao CX Biomater Adv; 2023 Jun; 149():213421. PubMed ID: 37060634 [TBL] [Abstract][Full Text] [Related]
30. Curcumin-loaded methacrylate pullulan with grafted carboxymethyl-β-cyclodextrin to form hydrogels for wound healing: In vitro evaluation. Nonsuwan P; Phiboonchaiyanan PP; Hirun N; Kraisit P Carbohydr Polym; 2023 Dec; 321():121294. PubMed ID: 37739503 [TBL] [Abstract][Full Text] [Related]
31. Formation of Zwitterionic and Self-Healable Hydrogels via Amino-yne Click Chemistry for Development of Cellular Scaffold and Tumor Spheroid Phantom for MRI. Nguyen CTV; Chow SKK; Nguyen HN; Liu T; Walls A; Withey S; Liebig P; Mueller M; Thierry B; Yang CT; Huang CJ ACS Appl Mater Interfaces; 2024 Jul; 16(28):36157-36167. PubMed ID: 38973633 [TBL] [Abstract][Full Text] [Related]
32. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Carr LR; Xue H; Jiang S Biomaterials; 2011 Feb; 32(4):961-8. PubMed ID: 20970184 [TBL] [Abstract][Full Text] [Related]
33. Release of paeonol-β-CD complex from thermo-sensitive poly(N-isopropylacrylamide) hydrogels. Tsao JY; Tsai HH; Wu CP; Lin PY; Su SY; Chen LD; Tsai FJ; Tsai Y Int J Pharm; 2010 Dec; 402(1-2):123-8. PubMed ID: 20933068 [TBL] [Abstract][Full Text] [Related]
34. Microgel-Crosslinked Thermo-Responsive Hydrogel Actuators with High Mechanical Properties and Rapid Response. Yang Y; Xiao Y; Wu X; Deng J; Wei R; Liu A; Chai H; Wang R Macromol Rapid Commun; 2024 Apr; 45(8):e2300643. PubMed ID: 38225681 [TBL] [Abstract][Full Text] [Related]
35. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Kim SJ; Byun H; Lee S; Kim E; Lee GM; Huh SJ; Joo J; Shin H Acta Biomater; 2022 Apr; 142():60-72. PubMed ID: 35085797 [TBL] [Abstract][Full Text] [Related]
36. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
37. Reversibly Assembled Electroconductive Hydrogel via a Host-Guest Interaction for 3D Cell Culture. Xu Y; Cui M; Patsis PA; Günther M; Yang X; Eckert K; Zhang Y ACS Appl Mater Interfaces; 2019 Feb; 11(8):7715-7724. PubMed ID: 30714715 [TBL] [Abstract][Full Text] [Related]
38. Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review. Wang S; Wei Y; Wang Y; Cheng Y Carbohydr Polym; 2023 Aug; 313():120760. PubMed ID: 37182939 [TBL] [Abstract][Full Text] [Related]
39. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
40. Reversible Control of Gelatin Hydrogel Stiffness by Using DNA Crosslinkers*. Buchberger A; Saini H; Eliato KR; Zare A; Merkley R; Xu Y; Bernal J; Ros R; Nikkhah M; Stephanopoulos N Chembiochem; 2021 May; 22(10):1755-1760. PubMed ID: 33484601 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]