These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38823920)
41. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085 [TBL] [Abstract][Full Text] [Related]
42. Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing. Tang Q; Chen C; Jiang Y; Huang J; Liu Y; Nthumba PM; Gu G; Wu X; Zhao Y; Ren J J Mater Chem B; 2020 Jul; 8(26):5756-5764. PubMed ID: 32519734 [TBL] [Abstract][Full Text] [Related]
43. Facile synthesis of 2-hydroxy-β-cyclodextrin/polyacrylamide/carbazole hydrogel and its application for the treatment of infected wounds in a murine model. Sangar FH; Farahpour MR; Tabatabaei ZG Int J Biol Macromol; 2024 May; 267(Pt 1):131252. PubMed ID: 38554897 [TBL] [Abstract][Full Text] [Related]
44. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding. Occhetta P; Visone R; Russo L; Cipolla L; Moretti M; Rasponi M J Biomed Mater Res A; 2015 Jun; 103(6):2109-17. PubMed ID: 25294368 [TBL] [Abstract][Full Text] [Related]
45. Alginate-based self-healing hydrogels assembled by dual cross-linking strategy: Fabrication and evaluation of mechanical properties. Mohamadhoseini M; Mohamadnia Z Int J Biol Macromol; 2021 Nov; 191():139-151. PubMed ID: 34543626 [TBL] [Abstract][Full Text] [Related]
46. Construction of a Decellularized Multicomponent Extracellular Matrix Interpenetrating Network Scaffold by Gelatin Microporous Hydrogel 3D Cell Culture System. Shi J; Yao H; Wang B; Yang J; Liu D; Shang X; Chong H; Fei W; Wang DA Macromol Rapid Commun; 2024 Mar; 45(5):e2300508. PubMed ID: 38049086 [TBL] [Abstract][Full Text] [Related]
48. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. Wu J; Liyarita BR; Zhu H; Liu M; Hu X; Shao F ACS Appl Mater Interfaces; 2021 Oct; 13(42):49705-49712. PubMed ID: 34658242 [TBL] [Abstract][Full Text] [Related]
49. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation. Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698 [TBL] [Abstract][Full Text] [Related]
50. A Facile, Transfection-Free Approach to siRNA Delivery in In Vitro 3D Spheroid Models. Riching AS; Malloy A; Anderson EM; Sheard J; Mikkonen P; van Brabant Smith A; Strezoska Z; Levenga J Curr Protoc; 2024 Sep; 4(9):e1121. PubMed ID: 39225471 [TBL] [Abstract][Full Text] [Related]
51. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266 [TBL] [Abstract][Full Text] [Related]
52. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Lin CC; Raza A; Shih H Biomaterials; 2011 Dec; 32(36):9685-95. PubMed ID: 21924490 [TBL] [Abstract][Full Text] [Related]
53. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Zhou Q; Kang H; Bielec M; Wu X; Cheng Q; Wei W; Dai H Carbohydr Polym; 2018 Oct; 197():292-304. PubMed ID: 30007617 [TBL] [Abstract][Full Text] [Related]
54. A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels. Meinert C; Theodoropoulos C; Klein TJ; Hutmacher DW; Loessner D Methods Mol Biol; 2018; 1786():175-194. PubMed ID: 29786793 [TBL] [Abstract][Full Text] [Related]
55. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Liu ZQ; Wei Z; Zhu XL; Huang GY; Xu F; Yang JH; Osada Y; Zrínyi M; Li JH; Chen YM Colloids Surf B Biointerfaces; 2015 Apr; 128():140-148. PubMed ID: 25744162 [TBL] [Abstract][Full Text] [Related]
56. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
57. Cationic poly(VCL-AETA) hydrogels and ovalbumin (OVA) release in vitro. Wu DQ; Chu CC; Chen FA J Mater Sci Mater Med; 2008 Dec; 19(12):3593-601. PubMed ID: 18642060 [TBL] [Abstract][Full Text] [Related]
58. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
59. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release. Wu DQ; Sun YX; Xu XD; Cheng SX; Zhang XZ; Zhuo RX Biomacromolecules; 2008 Apr; 9(4):1155-62. PubMed ID: 18307310 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Vainieri ML; Lolli A; Kops N; D'Atri D; Eglin D; Yayon A; Alini M; Grad S; Sivasubramaniyan K; van Osch GJVM Acta Biomater; 2020 Jan; 101():293-303. PubMed ID: 31726249 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]