These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38824144)

  • 1. NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer.
    Liu LJ; Zhang MM; Deng Z; Yan LL; Lin Y; Phillips DL; Yam VW; He J
    Nat Commun; 2024 Jun; 15(1):4688. PubMed ID: 38824144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions.
    Kisch H
    Acc Chem Res; 2017 Apr; 50(4):1002-1010. PubMed ID: 28378591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible-Light-Induced, Copper-Catalyzed Three-Component Coupling of Alkyl Halides, Olefins, and Trifluoromethylthiolate to Generate Trifluoromethyl Thioethers.
    He J; Chen C; Fu GC; Peters JC
    ACS Catal; 2018 Dec; 8(12):11741-11748. PubMed ID: 31396434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eight-Electron Superatomic Cu
    Jia T; Guan ZJ; Zhang C; Zhu XZ; Chen YX; Zhang Q; Yang Y; Sun D
    J Am Chem Soc; 2023 May; 145(18):10355-10363. PubMed ID: 37104621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-Light Copper Nanocluster Catalysis for the C-N Coupling of Aryl Chlorides at Room Temperature.
    Sagadevan A; Ghosh A; Maity P; Mohammed OF; Bakr OM; Rueping M
    J Am Chem Soc; 2022 Jul; 144(27):12052-12061. PubMed ID: 35766900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromophore-Inspired Design of Pyridinium-Based Metal-Organic Polymers for Dual Photoredox Catalysis.
    Zhang Q; Jin Y; Ma L; Zhang Y; Meng C; Duan C
    Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202204918. PubMed ID: 35661376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal-organic framework via two-photon absorption.
    Tang JH; Han G; Li G; Yan K; Sun Y
    iScience; 2022 Apr; 25(4):104064. PubMed ID: 35355522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts.
    Ramani A; Desai B; Dholakiya BZ; Naveen T
    Chem Commun (Camb); 2022 Jul; 58(57):7850-7873. PubMed ID: 35770649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eight-Electron Copper Nanoclusters for Photothermal Conversion.
    Sun X; Yan B; Gong X; Xu Q; Guo Q; Shen H
    Chemistry; 2024 May; 30(28):e202400527. PubMed ID: 38470123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrene-based metal-organic framework NU-1000 photocatalysed atom-transfer radical addition for iodoperfluoroalkylation and (
    Zhang T; Wang P; Gao Z; An Y; He C; Duan C
    RSC Adv; 2018 Sep; 8(57):32610-32620. PubMed ID: 35547715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced, copper-catalyzed three components cyanofluoroalkylation of alkenes with fluoroalkyl iodides as fluoroalkylation reagents.
    Guo Q; Wang M; Wang Y; Xu Z; Wang R
    Chem Commun (Camb); 2017 Nov; 53(91):12317-12320. PubMed ID: 29095444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis.
    Chatterjee T; Iqbal N; You Y; Cho EJ
    Acc Chem Res; 2016 Oct; 49(10):2284-2294. PubMed ID: 27626105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Structures and Photoredox Chemistry of Tungsten(0) Arylisocyanides.
    Barth AT; Fajardo J; Sattler W; Winkler JR; Gray HB
    Acc Chem Res; 2023 Jul; 56(14):1978-1989. PubMed ID: 37384787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters.
    Aikens CM
    Acc Chem Res; 2018 Dec; 51(12):3065-3073. PubMed ID: 30444598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Near Infrared Light-Activatable Phthalocyanine Catalysts.
    Katsurayama Y; Ikabata Y; Maeda H; Segi M; Nakai H; Furuyama T
    Chemistry; 2022 Jan; 28(2):e202103223. PubMed ID: 34734432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings.
    Chen B; Wu LZ; Tung CH
    Acc Chem Res; 2018 Oct; 51(10):2512-2523. PubMed ID: 30280898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster.
    Shi WQ; Zeng L; He RL; Han XS; Guan ZJ; Zhou M; Wang QM
    Science; 2024 Jan; 383(6680):326-330. PubMed ID: 38236955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.