These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38824252)

  • 1. The relationship between the structural changes in the cervical spinal cord and sensorimotor function of children with thoracolumbar spinal cord injury (TLSCI).
    Qi Q; Wang L; Yang B; Jia Y; Wang Y; Xin H; Zheng W; Chen X; Chen Q; Li F; Du J; Lu J; Chen N
    Spinal Cord; 2024 Jul; 62(7):414-420. PubMed ID: 38824252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury.
    Seif M; Curt A; Thompson AJ; Grabher P; Weiskopf N; Freund P
    Neuroimage Clin; 2018; 20():556-563. PubMed ID: 30175042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion Tensor Imaging Assessment of Regional White Matter Changes in the Cervical and Thoracic Spinal Cord in Pediatric Subjects.
    Saksena S; Mohamed FB; Middleton DM; Krisa L; Alizadeh M; Shahrampour S; Conklin CJ; Flanders A; Finsterbusch J; Mulcahey MJ; Faro SH
    J Neurotrauma; 2019 Mar; 36(6):853-861. PubMed ID: 30113265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury.
    Lundell H; Barthelemy D; Skimminge A; Dyrby TB; Biering-Sørensen F; Nielsen JB
    Spinal Cord; 2011 Jan; 49(1):70-5. PubMed ID: 20697420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural history of neurological improvement following complete (AIS A) thoracic spinal cord injury across three registries to guide acute clinical trial design and interpretation.
    Aimetti AA; Kirshblum S; Curt A; Mobley J; Grossman RG; Guest JD
    Spinal Cord; 2019 Sep; 57(9):753-762. PubMed ID: 31182786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional motor preservation below the level of injury in subjects with American Spinal Injury Association Impairment Scale grade A spinal cord injuries.
    Zariffa J; Curt A; ; Steeves JD
    Arch Phys Med Rehabil; 2012 May; 93(5):905-7. PubMed ID: 22360976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility and Safety of Cervical Kinematic Magnetic Resonance Imaging in Patients with Cervical Spinal Cord Injury without Fracture and Dislocation.
    Bao Y; Zhong X; Zhu W; Chen Y; Zhou L; Dai X; Liao J; Li Z; Hu K; Bei K; Xiong Y; Hu Y; Zhao Q; Zhu Z; Yu Y; Wu Q; Xi X
    Orthop Surg; 2020 Apr; 12(2):570-581. PubMed ID: 32347006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution-based estimates of clinically significant changes in the International Standards for Neurological Classification of Spinal Cord Injury motor and sensory scores.
    Scivoletto G; Tamburella F; Laurenza L; Molinari M
    Eur J Phys Rehabil Med; 2013 Jun; 49(3):373-84. PubMed ID: 23486305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of the neurological level of injury as a prognostic predictor for motor complete cervical spinal cord injury patients.
    Kawano O; Maeda T; Sakai H; Masuda M; Morishita Y; Hayashi T; Kubota K; Kobayakawa K; Yokota K; Kaneyama H
    J Spinal Cord Med; 2023 May; 46(3):494-500. PubMed ID: 33830904
    [No Abstract]   [Full Text] [Related]  

  • 10. Efficacy of Ultra-Early (< 12 h), Early (12-24 h), and Late (>24-138.5 h) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C Cervical Spinal Cord Injury.
    Aarabi B; Akhtar-Danesh N; Chryssikos T; Shanmuganathan K; Schwartzbauer GT; Simard JM; Olexa J; Sansur CA; Crandall KM; Mushlin H; Kole MJ; Le EJ; Wessell AP; Pratt N; Cannarsa G; Lomangino C; Scarboro M; Aresco C; Oliver J; Caffes N; Carbine S; Mori K
    J Neurotrauma; 2020 Feb; 37(3):448-457. PubMed ID: 31310155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association Between Magnetic Resonance Imaging-Based Spinal Morphometry and Sensorimotor Behavior in a Hemicontusion Model of Incomplete Cervical Spinal Cord Injury in Rats.
    Chitturi J; Sanganahalli BG; Herman P; Hyder F; Ni L; Elkabes S; Heary R; Kannurpatti SS
    Brain Connect; 2020 Nov; 10(9):479-489. PubMed ID: 32981350
    [No Abstract]   [Full Text] [Related]  

  • 12. Correlations of diffusion tensor imaging and clinical measures with spinal cord cross-sectional area measurements in pediatric spinal cord injury patients.
    Middleton DM; Shahrampour S; Krisa L; Liu W; Nair G; Jacobson S; Conklin CJ; Alizadeh M; Faro SH; Mulcahey MJ; Mohamed FB
    J Spinal Cord Med; 2023 Nov; 46(6):950-957. PubMed ID: 34855576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study.
    Freund P; Weiskopf N; Ashburner J; Wolf K; Sutter R; Altmann DR; Friston K; Thompson A; Curt A
    Lancet Neurol; 2013 Sep; 12(9):873-881. PubMed ID: 23827394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidimensional Analysis of Magnetic Resonance Imaging Predicts Early Impairment in Thoracic and Thoracolumbar Spinal Cord Injury.
    Mabray MC; Talbott JF; Whetstone WD; Dhall SS; Phillips DB; Pan JZ; Manley GT; Bresnahan JC; Beattie MS; Haefeli J; Ferguson AR
    J Neurotrauma; 2016 May; 33(10):954-62. PubMed ID: 26414451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of diffusion tensor imaging and phase-contrast MR with clinical parameters of cervical spinal cord injuries.
    Kim SY; Shin MJ; Chang JH; Lee CH; Shin YI; Shin YB; Ko HY
    Spinal Cord; 2015 Aug; 53(8):608-14. PubMed ID: 25868880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Acute Diffusion Tensor Imaging and Conventional Magnetic Resonance Parameters in Predicting Long-Term Outcome after Blunt Cervical Spinal Cord Injury.
    Shanmuganathan K; Zhuo J; Bodanapally UK; Kuladeep S; Aarabi B; Adams J; Miller C; Gullapallie RP; Menakar J
    J Neurotrauma; 2020 Feb; 37(3):458-465. PubMed ID: 31190610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relevance of MRI for predicting neurological recovery following cervical traumatic spinal cord injury.
    Martineau J; Goulet J; Richard-Denis A; Mac-Thiong JM
    Spinal Cord; 2019 Oct; 57(10):866-873. PubMed ID: 31123335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical correlates of high cervical fractional anisotropy in acute cervical spinal cord injury.
    Vedantam A; Eckardt G; Wang MC; Schmit BD; Kurpad SN
    World Neurosurg; 2015 May; 83(5):824-8. PubMed ID: 24055569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can anatomic level of injury on MRI predict neurological level in acute cervical spinal cord injury?
    Zohrabian VM; Parker L; Harrop JS; Vaccaro AR; Marino RJ; Flanders AE
    Br J Neurosurg; 2016; 30(2):204-10. PubMed ID: 26168300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sacral sparing in SCI: beyond the S4-S5 and anorectal examination.
    Zariffa J; Kramer JL; Jones LA; Lammertse DP; Curt A; ; Steeves JD
    Spine J; 2012 May; 12(5):389-400.e3. PubMed ID: 22572584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.