These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38824295)

  • 1. Design of an ultrafast plasmonic nanolaser for high-intensity broadband emission operating at room temperature.
    Zhou P; Jin L; Liang K; Liang X; Li J; Deng X; Wang Y; Guo J; Yu L; Zhang J
    Opt Lett; 2024 Jun; 49(11):2930-2933. PubMed ID: 38824295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanolasers in On-Chip Light Sources: Prospects and Challenges.
    Liang Y; Li C; Huang YZ; Zhang Q
    ACS Nano; 2020 Nov; 14(11):14375-14390. PubMed ID: 33119269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor plasmonic nanolasers: current status and perspectives.
    Gwo S; Shih CK
    Rep Prog Phys; 2016 Aug; 79(8):086501. PubMed ID: 27459210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep subwavelength confinement and threshold engineering in a coupled nanorods based spaser.
    Motavas MH; Zarifkar A
    Opt Express; 2019 Jul; 27(15):21579-21596. PubMed ID: 31510232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Nanolasers Enhanced by Hybrid Graphene-Insulator-Metal Structures.
    Li H; Li JH; Hong KB; Yu MW; Chung YC; Hsu CY; Yang JH; Cheng CW; Huang ZT; Chen KP; Lin TR; Gwo S; Lu TC
    Nano Lett; 2019 Aug; 19(8):5017-5024. PubMed ID: 31268338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.
    Chou YH; Hong KB; Chang CT; Chang TC; Huang ZT; Cheng PJ; Yang JH; Lin MH; Lin TR; Chen KP; Gwo S; Lu TC
    Nano Lett; 2018 Feb; 18(2):747-753. PubMed ID: 29320208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Nanolaser Technology.
    Jeong KY; Hwang MS; Kim J; Park JS; Lee JM; Park HG
    Adv Mater; 2020 Dec; 32(51):e2001996. PubMed ID: 32945000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate.
    Huang C; Sun W; Fan Y; Wang Y; Gao Y; Zhang N; Wang K; Liu S; Wang S; Xiao S; Song Q
    ACS Nano; 2018 Apr; 12(4):3865-3874. PubMed ID: 29641176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh Purcell factor in low-threshold nanolaser based on asymmetric hybrid plasmonic cavity.
    Wei W; Yan X; Zhang X
    Sci Rep; 2016 Sep; 6():33063. PubMed ID: 27616768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithographically Defined, Room Temperature Low Threshold Subwavelength Red-Emitting Hybrid Plasmonic Lasers.
    Liu N; Gocalinska A; Justice J; Gity F; Povey I; McCarthy B; Pemble M; Pelucchi E; Wei H; Silien C; Xu H; Corbett B
    Nano Lett; 2016 Dec; 16(12):7822-7828. PubMed ID: 27960504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic crystal defect nanolaser.
    Lakhani AM; Kim MK; Lau EK; Wu MC
    Opt Express; 2011 Sep; 19(19):18237-45. PubMed ID: 21935190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers.
    Chou YH; Chou BT; Chiang CK; Lai YY; Yang CT; Li H; Lin TR; Lin CC; Kuo HC; Wang SC; Lu TC
    ACS Nano; 2015; 9(4):3978-83. PubMed ID: 25853853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast plasmonic lasing from a metal/semiconductor interface.
    Wang J; Jia X; Wang Z; Liu W; Zhu X; Huang Z; Yu H; Yang Q; Sun Y; Wang Z; Qu S; Lin J; Jin P; Wang Z
    Nanoscale; 2020 Aug; 12(31):16403-16408. PubMed ID: 32525164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking plasmonic nanolaser emission by selective extraction of electromagnetic near-field from photonic microcavity.
    Deng Q; Kang M; Zheng D; Zhang S; Xu H
    Nanoscale; 2018 Apr; 10(16):7431-7439. PubMed ID: 29637981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers.
    Huang ZT; Chien TW; Cheng CW; Li CC; Chen KP; Gwo S; Lu TC
    ACS Nano; 2023 Apr; 17(7):6488-6496. PubMed ID: 36989057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array.
    Zhang C; Lu Y; Ni Y; Li M; Mao L; Liu C; Zhang D; Ming H; Wang P
    Nano Lett; 2015 Feb; 15(2):1382-7. PubMed ID: 25622291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic bowtie nanolaser arrays.
    Suh JY; Kim CH; Zhou W; Huntington MD; Co DT; Wasielewski MR; Odom TW
    Nano Lett; 2012 Nov; 12(11):5769-74. PubMed ID: 23013283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear Boost of Optical Angular Momentum Selectivity by Hybrid Nanolaser Circuits.
    He C; Tang Z; Liu L; Maier SA; Wang X; Ren H; Pan A
    Nano Lett; 2024 Feb; 24(5):1784-1791. PubMed ID: 38265953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum.
    Chou YH; Wu YM; Hong KB; Chou BT; Shih JH; Chung YC; Chen PY; Lin TR; Lin CC; Lin SD; Lu TC
    Nano Lett; 2016 May; 16(5):3179-86. PubMed ID: 27089144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.