These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38824297)
1. Radio frequency electric field-enhanced sensing based on the Rydberg atom-based superheterodyne receiver. Yang W; Jing M; Zhang H; Zhang L; Xiao L; Jia S Opt Lett; 2024 Jun; 49(11):2938-2941. PubMed ID: 38824297 [TBL] [Abstract][Full Text] [Related]
2. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems. Zhang H; Ma Y; Liao K; Yang W; Liu Z; Ding D; Yan H; Li W; Zhang L Sci Bull (Beijing); 2024 May; 69(10):1515-1535. PubMed ID: 38614855 [TBL] [Abstract][Full Text] [Related]
3. High sensitivity measurement of ULF, VLF, and LF fields with a Rydberg-atom sensor. Lei M; Shi M Opt Lett; 2024 Oct; 49(19):5547-5550. PubMed ID: 39353003 [TBL] [Abstract][Full Text] [Related]
5. Quantum sensing of microwave electric fields based on Rydberg atoms. Yuan J; Yang W; Jing M; Zhang H; Jiao Y; Li W; Zhang L; Xiao L; Jia S Rep Prog Phys; 2023 Sep; 86(10):. PubMed ID: 37604116 [TBL] [Abstract][Full Text] [Related]
6. Super low-frequency electric field measurement based on Rydberg atoms. Li L; Jiao Y; Hu J; Li H; Shi M; Zhao J; Jia S Opt Express; 2023 Aug; 31(18):29228-29234. PubMed ID: 37710727 [TBL] [Abstract][Full Text] [Related]
7. Noise analysis of the atomic superheterodyne receiver based on flat-top laser beams. Wang Z; Jing M; Zhang P; Yuan S; Zhang H; Zhang L; Xiao L; Jia S Opt Express; 2023 Jun; 31(12):19909-19917. PubMed ID: 37381396 [TBL] [Abstract][Full Text] [Related]
8. Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement. Song Z; Zhang W; Wu Q; Mu H; Liu X; Zhang L; Qu J Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248986 [TBL] [Abstract][Full Text] [Related]
9. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Song Z; Liu H; Liu X; Zhang W; Zou H; Zhang J; Qu J Opt Express; 2019 Mar; 27(6):8848-8857. PubMed ID: 31052696 [TBL] [Abstract][Full Text] [Related]
10. Rydberg atom-based AM receiver with a weak continuous frequency carrier. Li H; Hu J; Bai J; Shi M; Jiao Y; Zhao J; Jia S Opt Express; 2022 Apr; 30(8):13522-13529. PubMed ID: 35472962 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field. Yao J; An Q; Zhou Y; Yang K; Wu F; Fu Y Opt Lett; 2022 Oct; 47(20):5256-5259. PubMed ID: 36240336 [TBL] [Abstract][Full Text] [Related]
12. Precise measurement of microwave polarization using a Rydberg atom-based mixer. Wang Y; Jia F; Hao J; Cui Y; Zhou F; Liu X; Mei J; Yu Y; Liu Y; Zhang J; Xie F; Zhong Z Opt Express; 2023 Mar; 31(6):10449-10457. PubMed ID: 37157591 [TBL] [Abstract][Full Text] [Related]
13. Engineering Artificial Atomic Systems of Giant Electric Dipole Moment. Yu B; Chu Y; Betzholz R; Zhang S; Cai J Phys Rev Lett; 2024 Feb; 132(7):073202. PubMed ID: 38427885 [TBL] [Abstract][Full Text] [Related]
14. Tunable frequency of a microwave mixed receiver based on Rydberg atoms under the Zeeman effect. Shi Y; Li C; Ouyang K; Ren W; Li W; Cao M; Xue Z; Shi M Opt Express; 2023 Oct; 31(22):36255-36262. PubMed ID: 38017780 [TBL] [Abstract][Full Text] [Related]
15. Deep learning enhanced Rydberg multifrequency microwave recognition. Liu ZK; Zhang LH; Liu B; Zhang ZY; Guo GC; Ding DS; Shi BS Nat Commun; 2022 Apr; 13(1):1997. PubMed ID: 35422054 [TBL] [Abstract][Full Text] [Related]
16. The Stark effect in Rydberg states of a highly polar diatomic molecule: CaF. Petrović VS; Kay JJ; Coy SL; Field RW J Chem Phys; 2009 Aug; 131(6):064301. PubMed ID: 19691382 [TBL] [Abstract][Full Text] [Related]