These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38824365)

  • 1. Error-compensation network for ringing artifact reduction in holographic displays.
    Yuan G; Zhou M; Peng Y; Chen M; Geng Z
    Opt Lett; 2024 Jun; 49(11):3210-3213. PubMed ID: 38824365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time High-Quality Computer-Generated Hologram Using Complex-Valued Convolutional Neural Network.
    Zhong C; Sang X; Yan B; Li H; Chen D; Qin X; Chen S; Ye X
    IEEE Trans Vis Comput Graph; 2024 Jul; 30(7):3709-3718. PubMed ID: 37022034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier-inspired neural module for real-time and high-fidelity computer-generated holography.
    Dong Z; Xu C; Ling Y; Li Y; Su Y
    Opt Lett; 2023 Feb; 48(3):759-762. PubMed ID: 36723582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed computer-generated holography using an autoencoder-based deep neural network.
    Wu J; Liu K; Sui X; Cao L
    Opt Lett; 2021 Jun; 46(12):2908-2911. PubMed ID: 34129571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction model-driven neural network trained using hybrid domain loss for real-time and high-quality computer-generated holography.
    Zheng H; Peng J; Wang Z; Shui X; Yu Y; Xia X
    Opt Express; 2023 Jun; 31(12):19931-19944. PubMed ID: 37381398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffraction model-informed neural network for unsupervised layer-based computer-generated holography.
    Shui X; Zheng H; Xia X; Yang F; Wang W; Yu Y
    Opt Express; 2022 Dec; 30(25):44814-44826. PubMed ID: 36522896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image quality improvement of random phase-free holograms by addressing the cause of ringing artifacts.
    Nagahama Y; Shimobaba T; Kakue T; Takaki Y; Ito T
    Appl Opt; 2019 Mar; 58(9):2146-2151. PubMed ID: 31044911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics.
    Nagahama Y; Shimobaba T; Kakue T; Masuda N; Ito T
    Appl Opt; 2017 May; 56(13):F61-F66. PubMed ID: 28463300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learned holographic light transport: invited.
    Kavaklı K; Urey H; Akşit K
    Appl Opt; 2022 Feb; 61(5):B50-B55. PubMed ID: 35201125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards real-time photorealistic 3D holography with deep neural networks.
    Shi L; Li B; Kim C; Kellnhofer P; Matusik W
    Nature; 2021 Mar; 591(7849):234-239. PubMed ID: 33692557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered holographic stereogram based on inverse Fresnel diffraction.
    Zhang H; Zhao Y; Cao L; Jin G
    Appl Opt; 2016 Jan; 55(3):A154-9. PubMed ID: 26835948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Fresnel phase hologram for ringing artifacts removal in lensless holographic projection.
    Tian S; Chen L; Zhang H
    Appl Opt; 2022 Feb; 61(5):B17-B24. PubMed ID: 35201121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of digital holographic recording and reconstruction using a generalized matrix method.
    Bazow B; Phan T; Nguyen T; Raub C; Nehmetallah G
    Appl Opt; 2021 Feb; 60(4):A21-A37. PubMed ID: 33690351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DCPNet: a dual-channel parallel deep neural network for high quality computer-generated holography.
    Liu Q; Chen J; Qiu B; Wang Y; Liu J
    Opt Express; 2023 Oct; 31(22):35908-35921. PubMed ID: 38017752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gibbs-ringing artifact removal based on local subvoxel-shifts.
    Kellner E; Dhital B; Kiselev VG; Reisert M
    Magn Reson Med; 2016 Nov; 76(5):1574-1581. PubMed ID: 26745823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI.
    Lee HH; Novikov DS; Fieremans E
    Magn Reson Med; 2021 Nov; 86(5):2733-2750. PubMed ID: 34227142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real time breast microwave radar image reconstruction using circular holography: a study of experimental feasibility.
    Flores-Tapia D; Pistorius S
    Med Phys; 2011 Oct; 38(10):5420-31. PubMed ID: 21992361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Computation of 3D Wireframes in Computer-Generated Holography.
    Blinder D; Nishitsuji T; Schelkens P
    IEEE Trans Image Process; 2021; 30():9418-9428. PubMed ID: 34757908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.