These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38824365)

  • 41. Real-time 4K computer-generated hologram based on encoding conventional neural network with learned layered phase.
    Zhong C; Sang X; Yan B; Li H; Xie X; Qin X; Chen S
    Sci Rep; 2023 Nov; 13(1):19372. PubMed ID: 37938607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model for phase hologram design with suppressed speckle noise.
    Sun X; Mu X; Xu C; Pang H; Deng Q; Zhang K; Jiang H; Du J; Yin S; Du C
    Opt Express; 2022 Jan; 30(2):2646-2658. PubMed ID: 35209400
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gaze-Contingent Retinal Speckle Suppression for Perceptually-Matched Foveated Holographic Displays.
    Chakravarthula P; Zhang Z; Tursun O; Didyk P; Sun Q; Fuchs H
    IEEE Trans Vis Comput Graph; 2021 Nov; 27(11):4194-4203. PubMed ID: 34449368
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast method for ringing artifacts reduction in random phase-free kinoforms.
    Chen C; Wang J; Xiao D; Wang QH
    Appl Opt; 2019 Feb; 58(5):A13-A20. PubMed ID: 30873986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining.
    Zhu B; Liu H; Liu Y; Yan X; Chen Y; Chen X
    Opt Lett; 2020 Aug; 45(15):4132-4135. PubMed ID: 32735241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MARGANVAC: metal artifact reduction method based on generative adversarial network with variable constraints.
    Li G; Ji L; You C; Gao S; Zhou L; Bai K; Luo S; Gu N
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37696272
    [No Abstract]   [Full Text] [Related]  

  • 47. Training a neural network for Gibbs and noise removal in diffusion MRI.
    Muckley MJ; Ades-Aron B; Papaioannou A; Lemberskiy G; Solomon E; Lui YW; Sodickson DK; Fieremans E; Novikov DS; Knoll F
    Magn Reson Med; 2021 Jan; 85(1):413-428. PubMed ID: 32662910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Object-based digital hologram segmentation and motion compensation.
    Birnbaum T; Blinder D; Muhamad RK; Schretter C; Symeonidou A; Schelkens P
    Opt Express; 2020 Apr; 28(8):11861-11882. PubMed ID: 32403688
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display.
    Zhao T; Liu J; Gao Q; He P; Han Y; Wang Y
    Opt Express; 2018 Jun; 26(13):16063-16073. PubMed ID: 30119443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Learning-based compensation of spatially varying aberrations for holographic display [Invited].
    Yoo D; Nam SW; Jo Y; Moon S; Lee CK; Lee B
    J Opt Soc Am A Opt Image Sci Vis; 2022 Feb; 39(2):A86-A92. PubMed ID: 35200966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lensless computational imaging with a hybrid framework of holographic propagation and deep learning.
    Tian Z; Ming Z; Qi A; Li F; Yu X; Song Y
    Opt Lett; 2022 Sep; 47(17):4283-4286. PubMed ID: 36048634
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lensless phase-only holographic retinal projection display based on the error diffusion algorithm.
    Wang Z; Tu K; Pang Y; Xu M; Lv G; Feng Q; Wang A; Ming H
    Opt Express; 2022 Dec; 30(26):46450-46459. PubMed ID: 36558598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MRI reconstruction with enhanced self-similarity using graph convolutional network.
    Ma Q; Lai Z; Wang Z; Qiu Y; Zhang H; Qu X
    BMC Med Imaging; 2024 May; 24(1):113. PubMed ID: 38760778
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Holographic and speckle encryption using deep learning.
    Wang X; Wang W; Wei H; Xu B; Dai C
    Opt Lett; 2021 Dec; 46(23):5794-5797. PubMed ID: 34851892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction of image blurring of horizontally scanning holographic display.
    Takaki Y; Okada N
    Opt Express; 2010 May; 18(11):11327-34. PubMed ID: 20588994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity.
    Archibald R; Gelb A
    IEEE Trans Med Imaging; 2002 Apr; 21(4):305-19. PubMed ID: 12022619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. InDuDoNet+: A deep unfolding dual domain network for metal artifact reduction in CT images.
    Wang H; Li Y; Zhang H; Meng D; Zheng Y
    Med Image Anal; 2023 Apr; 85():102729. PubMed ID: 36623381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated filter selection for suppression of Gibbs ringing artefacts in MRI.
    Wang Y; Healy JJ
    Magn Reson Imaging; 2022 Nov; 93():3-10. PubMed ID: 35905936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.