These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38824398)
1. Historical museum samples reveal signals of selection and drift in response to changing insecticide use in an agricultural pest moth. Parvizi E; Bachler A; Zwick A; Walsh TK; Moritz C; McGaughran A J Evol Biol; 2024 Aug; 37(8):967-977. PubMed ID: 38824398 [TBL] [Abstract][Full Text] [Related]
2. Museum Genomics of an Agricultural Super-Pest, the Colorado Potato Beetle, Leptinotarsa decemlineata (Chrysomelidae), Provides Evidence of Adaptation from Standing Variation. Cohen ZP; François O; Schoville SD Integr Comp Biol; 2022 Dec; 62(6):1827-1837. PubMed ID: 36036479 [TBL] [Abstract][Full Text] [Related]
3. Toxicity and Cross-Resistance of Insecticides to Cry2Ab-Resistant and Cry2Ab-Susceptible Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae). Bird LJ; Downes SJ J Econ Entomol; 2014 Oct; 107(5):1923-30. PubMed ID: 26309283 [TBL] [Abstract][Full Text] [Related]
4. Selective Sweeps in a Nutshell: The Genomic Footprint of Rapid Insecticide Resistance Evolution in the Almond Agroecosystem. Calla B; Demkovich M; Siegel JP; Viana JPG; Walden KKO; Robertson HM; Berenbaum MR Genome Biol Evol; 2021 Jan; 13(1):. PubMed ID: 33146372 [TBL] [Abstract][Full Text] [Related]
6. Adaptive Introgression across Semipermeable Species Boundaries between Local Helicoverpa zea and Invasive Helicoverpa armigera Moths. Valencia-Montoya WA; Elfekih S; North HL; Meier JI; Warren IA; Tay WT; Gordon KHJ; Specht A; Paula-Moraes SV; Rane R; Walsh TK; Jiggins CD Mol Biol Evol; 2020 Sep; 37(9):2568-2583. PubMed ID: 32348505 [TBL] [Abstract][Full Text] [Related]
7. Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Franck P; Reyes M; Olivares J; Sauphanor B Mol Ecol; 2007 Sep; 16(17):3554-64. PubMed ID: 17845430 [TBL] [Abstract][Full Text] [Related]
8. Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. Walsh TK; Joussen N; Tian K; McGaughran A; Anderson CJ; Qiu X; Ahn SJ; Bird L; Pavlidi N; Vontas J; Ryu J; Rasool A; Barony Macedo I; Tay WT; Zhang Y; Whitehouse MEA; Silvie PJ; Downes S; Nemec L; Heckel DG PLoS One; 2018; 13(11):e0197760. PubMed ID: 30383872 [TBL] [Abstract][Full Text] [Related]
9. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. Wu K J Invertebr Pathol; 2007 Jul; 95(3):220-3. PubMed ID: 17467730 [TBL] [Abstract][Full Text] [Related]
10. Genome evolution in an agricultural pest following adoption of transgenic crops. Taylor KL; Hamby KA; DeYonke AM; Gould F; Fritz ML Proc Natl Acad Sci U S A; 2021 Dec; 118(52):. PubMed ID: 34930832 [TBL] [Abstract][Full Text] [Related]
11. Hybridization and gene flow in the mega-pest lineage of moth, Anderson CJ; Oakeshott JG; Tay WT; Gordon KHJ; Zwick A; Walsh TK Proc Natl Acad Sci U S A; 2018 May; 115(19):5034-5039. PubMed ID: 29610329 [TBL] [Abstract][Full Text] [Related]
12. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia. Downes S; Mahon R GM Crops Food; 2012; 3(3):228-34. PubMed ID: 22572906 [TBL] [Abstract][Full Text] [Related]
13. Using an F(2) screen to monitor frequency of resistance alleles to Bt cotton in field populations of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Xu Z; Liu F; Chen J; Huang F; Andow DA; Wang Y; Zhu YC; Shen J Pest Manag Sci; 2009 Apr; 65(4):391-7. PubMed ID: 19165746 [TBL] [Abstract][Full Text] [Related]
14. Frequency of resistance alleles to Cry1Ac toxin from cotton bollworm, Helicoverpa armigera (Hübner) collected from Bt-cotton growing areas of Telangana state of India. Singh TVK; Kukanur VS; G B S J Invertebr Pathol; 2021 Jul; 183():107559. PubMed ID: 33617874 [TBL] [Abstract][Full Text] [Related]
15. Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices. Fritz ML; DeYonke AM; Papanicolaou A; Micinski S; Westbrook J; Gould F Mol Ecol; 2018 Jan; 27(1):167-181. PubMed ID: 29134741 [TBL] [Abstract][Full Text] [Related]
16. Resistance selection of indoxacarb in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): cross-resistance, biochemical mechanisms and associated fitness costs. Cui L; Wang Q; Qi H; Wang Q; Yuan H; Rui C Pest Manag Sci; 2018 Nov; 74(11):2636-2644. PubMed ID: 29707889 [TBL] [Abstract][Full Text] [Related]
17. Susceptibility Profiles of Tossou E; Tepa-Yotto G; Kpindou OKD; Sandeu R; Datinon B; Zeukeng F; Akoton R; Tchigossou GM; Djègbè I; Vontas J; Martin T; Wondji C; Tamò M; Bokonon-Ganta AH; Djouaka R Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31142024 [No Abstract] [Full Text] [Related]
18. Determinants of Insecticide Resistance Evolution: Comparative Analysis Among Heliothines. Walsh TK; Heckel DG; Wu Y; Downes S; Gordon KHJ; Oakeshott JG Annu Rev Entomol; 2022 Jan; 67():387-406. PubMed ID: 34995087 [TBL] [Abstract][Full Text] [Related]
19. Rapid Adaptation and Interspecific Introgression in the North American Crop Pest Helicoverpa zea. North HL; Fu Z; Metz R; Stull MA; Johnson CD; Shirley X; Crumley K; Reisig D; Kerns DL; Gilligan T; Walsh T; Jiggins CD; Sword GA Mol Biol Evol; 2024 Jul; 41(7):. PubMed ID: 38941083 [TBL] [Abstract][Full Text] [Related]