BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38824641)

  • 1. Protocol for microfluidic single-cell cultivation and live-cell imaging of Chinese hamster ovary suspension cell lines.
    Schmitz J; Yermakov B; Grünberger A
    STAR Protoc; 2024 Jun; 5(2):103106. PubMed ID: 38824641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.
    Periyannan Rajeswari PK; Joensson HN; Andersson-Svahn H
    Electrophoresis; 2017 Jan; 38(2):305-310. PubMed ID: 27535608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable cell retention of mammalian suspension cells in microfluidic cultivation chambers.
    Schmitz J; Stute B; Täuber S; Kohlheyer D; von Lieres E; Grünberger A
    Sci Rep; 2023 Mar; 13(1):3857. PubMed ID: 36890160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput synchronization of mammalian cell cultures by spiral microfluidics.
    Lee WC; Bhagat AA; Lim CT
    Methods Mol Biol; 2014; 1104():3-13. PubMed ID: 24297405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of a cultivation platform for mammalian suspension cell lines with single-cell resolution.
    Schmitz J; Täuber S; Westerwalbesloh C; von Lieres E; Noll T; Grünberger A
    Biotechnol Bioeng; 2021 Feb; 118(2):992-1005. PubMed ID: 33200818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques.
    Zhang X; Yin H; Cooper JM; Haswell SJ
    Anal Bioanal Chem; 2008 Feb; 390(3):833-40. PubMed ID: 17849101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Cartridge for Bead-Based Affinity Assays.
    Pinto IF; Chotteau V; Russom A
    Methods Mol Biol; 2024; 2804():127-138. PubMed ID: 38753145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Serum-free medium for suspension culture of recombinant Chinese hamster ovary (11G-S) cells].
    Liu X; Liu H; Ye L; Li S; Wu B; Wang H; Xie J; Chen Z
    Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1116-22. PubMed ID: 21090117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a novel cell line, CHO-MK, derived from Chinese hamster ovary tissues for biologics manufacturing.
    Masuda K; Kubota M; Nakazawa Y; Iwama C; Watanabe K; Ishikawa N; Tanabe Y; Kono S; Tanemura H; Takahashi S; Makino T; Okumura T; Horiuchi T; Nonaka K; Murakami S; Kamihira M; Omasa T
    J Biosci Bioeng; 2024 Jun; 137(6):471-479. PubMed ID: 38472071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time monitoring of specific oxygen uptake rates of embryonic stem cells in a microfluidic cell culture device.
    Super A; Jaccard N; Cardoso Marques MP; Macown RJ; Griffin LD; Veraitch FS; Szita N
    Biotechnol J; 2016 Sep; 11(9):1179-89. PubMed ID: 27214658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous-flow fractionation of animal cells in microfluidic device using aqueous two-phase extraction.
    Nam KH; Chang WJ; Hong H; Lim SM; Kim DI; Koo YM
    Biomed Microdevices; 2005 Sep; 7(3):189-95. PubMed ID: 16133806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative comparison between microfluidic and microtiter plate formats for cell-based assays.
    Yin H; Pattrick N; Zhang X; Klauke N; Cordingley HC; Haswell SJ; Cooper JM
    Anal Chem; 2008 Jan; 80(1):179-85. PubMed ID: 18052343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High shear resistance of insect cells: the basis for substantial improvements in cell culture process design.
    Strobl F; Duerkop M; Palmberger D; Striedner G
    Sci Rep; 2021 May; 11(1):9413. PubMed ID: 33941799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Cell Retention Device for Perfusion of Mammalian Suspension Culture.
    Kwon T; Prentice H; Oliveira J; Madziva N; Warkiani ME; Hamel JP; Han J
    Sci Rep; 2017 Jul; 7(1):6703. PubMed ID: 28751635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic cell culture.
    Mehling M; Tay S
    Curr Opin Biotechnol; 2014 Feb; 25():95-102. PubMed ID: 24484886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hydrodynamic conditions on quantitative cellular assays in microfluidic systems.
    Yin H; Zhang X; Pattrick N; Klauke N; Cordingley HC; Haswell SJ; Cooper JM
    Anal Chem; 2007 Sep; 79(18):7139-44. PubMed ID: 17658886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy.
    Bruns T; Schickinger S; Wittig R; Schneckenburger H
    J Biomed Opt; 2012 Oct; 17(10):101518. PubMed ID: 23223994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of Ultra-High-Density Cell Suspension via Elasto-Inertial Microfluidics.
    Kwon T; Choi K; Han J
    Small; 2021 Oct; 17(39):e2101880. PubMed ID: 34396694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.