These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38824704)

  • 1. Inclusion of a skeletal model partly improves the reliability of lower limb joint angles derived from a markerless depth camera.
    Collings TJ; Devaprakash D; Pizzolato C; Lloyd DG; Barrett RS; Lenton GK; Thomeer LT; Bourne MN
    J Biomech; 2024 Jun; 170():112160. PubMed ID: 38824704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified conventional gait model versus cluster tracking: Test-retest reliability, agreement and impact of inverse kinematics with joint constraints on kinematic and kinetic data.
    Mentiplay BF; Clark RA
    Gait Posture; 2018 Jul; 64():75-83. PubMed ID: 29879631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How reliable are lower limb biomechanical evaluations during volleyball-specific jump-landing tasks?
    De Bleecker C; Vermeulen S; Willems T; Segers V; Spanhove V; Pataky T; Roosen P; Vanrenterghem J; De Ridder R
    Gait Posture; 2024 Sep; 113():287-294. PubMed ID: 38972170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
    Turner JA; Chaaban CR; Padua DA
    J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system.
    Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH
    Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AI-smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps.
    Barzyk P; Zimmermann P; Stein M; Keim D; Gruber M
    Eur J Sport Sci; 2024 Oct; 24(10):1452-1462. PubMed ID: 39205332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system.
    Schmitz A; Ye M; Boggess G; Shapiro R; Yang R; Noehren B
    Gait Posture; 2015 Feb; 41(2):694-8. PubMed ID: 25708833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of a markerless motion capture system to measure the trunk, hip and knee angle during walking on a flatland and a treadmill.
    Tamura H; Tanaka R; Kawanishi H
    J Biomech; 2020 Aug; 109():109929. PubMed ID: 32807306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks.
    Lewis CL; Foch E; Luko MM; Loverro KL; Khuu A
    PLoS One; 2015; 10(5):e0126258. PubMed ID: 25955321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prescribing joint co-ordinates during model preparation in OpenSim improves lower limb unplanned sidestepping kinematics.
    Donnelly CJ; Jackson C; Weir G; Alderson J; Robinson MA
    J Sci Med Sport; 2021 Feb; 24(2):159-163. PubMed ID: 32798129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in lower extremity kinematics between a bilateral drop-vertical jump and a single-leg step-down.
    Earl JE; Monteiro SK; Snyder KR
    J Orthop Sports Phys Ther; 2007 May; 37(5):245-52. PubMed ID: 17549953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of Using a Handheld Tablet and Application to Measure Lower-Extremity Alignment Angles.
    King DL; Belyea BC
    J Sport Rehabil; 2015 Nov; T24(4):. PubMed ID: 25310432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability and validity of the Kinect V2 for the assessment of lower extremity rehabilitation exercises.
    Wochatz M; Tilgner N; Mueller S; Rabe S; Eichler S; John M; Völler H; Mayer F
    Gait Posture; 2019 May; 70():330-335. PubMed ID: 30947108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Between-day reliability and minimum detectable change of the Conventional Gait Model 2 and Plug-in Gait Model during running.
    Okahisa T; Matsuura T; Tomonari K; Komatsu K; Yokoyama K; Iwase J; Yamada M; Sairyo K
    Gait Posture; 2023 Feb; 100():171-178. PubMed ID: 36563589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat.
    Graci V; Van Dillen LR; Salsich GB
    Gait Posture; 2012 Jul; 36(3):461-6. PubMed ID: 22591790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2.
    Yeung LF; Yang Z; Cheng KC; Du D; Tong RK
    Gait Posture; 2021 Jun; 87():19-26. PubMed ID: 33878509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics of lower limbs of healthy Chinese people sitting cross-legged.
    Zhou H; Liu A; Wang D; Zeng X; Wei S; Wang C
    Prosthet Orthot Int; 2013 Oct; 37(5):369-74. PubMed ID: 23344117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems.
    Perrott MA; Pizzari T; Cook J; McClelland JA
    Gait Posture; 2017 Feb; 52():57-61. PubMed ID: 27871019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity and Intrarater Reliability of 2-Dimensional Motion Analysis Using a Handheld Tablet Compared to Traditional 3-Dimensional Motion Analysis.
    Belyea BC; Lewis E; Gabor Z; Jackson J; King DL
    J Sport Rehabil; 2015 Nov; 24(4):. PubMed ID: 25612081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.