BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38824774)

  • 21. High-performance internal circulation anaerobic granular sludge reactor for cattle slaughterhouse wastewater treatment and simultaneous biogas production.
    Hellal MS; El-Kamah HM; Doma HS
    BMC Biotechnol; 2024 May; 24(1):29. PubMed ID: 38720285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Petroleum coke supplementation for enhanced biogas production and phosphate removal under mesophilic conditions.
    Alimohammadi M; Demirer GN
    Biotechnol Prog; 2023; 39(6):e3385. PubMed ID: 37642144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of a novel up-flow electrocatalytic hydrolysis acidification reactor (UEHAR) coupled with anoxic/oxic system for treating coking wastewater.
    Dong J; Chen Z; Han F; Hu D; Ge H; Jiang B; Yan J; Zhuang S; Wang Y; Cui S; Liang Z
    Water Res; 2024 Jun; 257():121670. PubMed ID: 38723347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance and microbial community composition in a long-term sequential anaerobic-aerobic bioreactor operation treating coking wastewater.
    Joshi DR; Zhang Y; Tian Z; Gao Y; Yang M
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8191-202. PubMed ID: 27221291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response of a continuous anaerobic digester to temperature transitions: A critical range for restructuring the microbial community structure and function.
    Kim J; Lee C
    Water Res; 2016 Feb; 89():241-51. PubMed ID: 26689661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic biological treatment of phenolic wastewater at 15-18 degrees C.
    Collins G; Foy C; McHugh S; Mahony T; O'Flaherty V
    Water Res; 2005 Apr; 39(8):1614-20. PubMed ID: 15878034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cometabolic degradation of low-strength coking wastewater and the bacterial community revealed by high-throughput sequencing.
    Zhou J; Li H; Chen X; Wan D; Mai W; Sun C
    Bioresour Technol; 2017 Dec; 245(Pt A):379-385. PubMed ID: 28898834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment.
    Svojitka J; Dvořák L; Studer M; Straub JO; Frömelt H; Wintgens T
    Bioresour Technol; 2017 Apr; 229():180-189. PubMed ID: 28113077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.
    Dehua M; Cong L; Xiaobiao Z; Rui L; Lujun C
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18343-52. PubMed ID: 27278071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon flow, energy metabolic intensity and metagenomic characteristics of a Fe (III)-enhanced anerobic digestion system during treating swine wastewater.
    Xie H; Wang Y; Chen Y; Hu Y; Adeleke R; Obi L; Wang Y; Cao W; Lin JG; Zhang Y
    Sci Total Environ; 2024 Jul; 935():173431. PubMed ID: 38782283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced removal of nitrate and refractory organic pollutants from bio-treated coking wastewater using corncobs as carbon sources and biofilm carriers.
    Sun G; Wan J; Sun Y; Li H; Chang C; Wang Y
    Chemosphere; 2019 Dec; 237():124520. PubMed ID: 31404739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced treatment of wastewater from the vitamin C biosynthesis industry using a UASB reactor supplemented with zero-valent iron.
    Shi R; Xu H; Zhang Y
    Environ Technol; 2011 Dec; 33(15-16):1859-65. PubMed ID: 22439574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic effects of simultaneous coupling ozonation and biodegradation for coking wastewater treatment: Advances in COD removal, toxic elimination, and microbial regulation.
    Cui B; Fu S; Hao X; Zhou D
    Chemosphere; 2023 Mar; 318():137956. PubMed ID: 36708779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide.
    Chu L; Wang J; Dong J; Liu H; Sun X
    Chemosphere; 2012 Jan; 86(4):409-14. PubMed ID: 22014660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced removal of phenol and chemical oxygen demand from coking wastewater using micro and nano bubbles: Microbial community and metabolic pathways.
    Xiang P; Ma P; He Q; Song Z; Miao Z
    Bioresour Technol; 2024 Feb; 394():130207. PubMed ID: 38109978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Treatment of coking wastewater in biofilm-based bioaugmentation process: Biofilm formation and microbial community analysis.
    Yuan K; Li S; Zhong F
    J Hazard Mater; 2020 Dec; 400():123117. PubMed ID: 32574876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Study on treatment of coking wastewater by A/O process of biological filter].
    Lai P; Zhao HZ; Ye ZF; Ni JR; Zeng M
    Huan Jing Ke Xue; 2007 Dec; 28(12):2727-33. PubMed ID: 18290428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of COD, phenols and ammonium from Lurgi coal gasification wastewater using A2O-MBR system.
    Wang Z; Xu X; Gong Z; Yang F
    J Hazard Mater; 2012 Oct; 235-236():78-84. PubMed ID: 22902132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous micro-current stimulation to upgrade methanolic wastewater biodegradation and biomethane recovery in an upflow anaerobic sludge blanket (UASB) reactor.
    Zhen G; Lu X; Kobayashi T; Su L; Kumar G; Bakonyi P; He Y; Sivagurunathan P; Nemestóthy N; Xu K; Zhao Y
    Chemosphere; 2017 Aug; 180():229-238. PubMed ID: 28410503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic treatment of sulfate-containing municipal wastewater with a fluidized bed reactor at 20 °C.
    Düppenbecker B; Cornel P
    Water Sci Technol; 2016; 73(10):2446-52. PubMed ID: 27191566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.