These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38824861)
21. Platinum-Doped Prussian Blue Nanozymes for Multiwavelength Bioimaging Guided Photothermal Therapy of Tumor and Anti-Inflammation. Li ZH; Chen Y; Sun Y; Zhang XZ ACS Nano; 2021 Mar; 15(3):5189-5200. PubMed ID: 33703878 [TBL] [Abstract][Full Text] [Related]
22. Protein-Assisted Osmium Nanoclusters with Intrinsic Peroxidase-like Activity and Extrinsic Antifouling Behavior. He SB; Lin MT; Yang L; Noreldeen HAA; Peng HP; Deng HH; Chen W ACS Appl Mater Interfaces; 2021 Sep; 13(37):44541-44548. PubMed ID: 34494808 [TBL] [Abstract][Full Text] [Related]
23. Colorimetric and Photothermal Dual-Modal Switching Lateral Flow Immunoassay Based on a Forced Dispersion Prussian Blue Nanocomposite for the Sensitive Detection of Prostate-Specific Antigen. Gong H; Gai S; Tao Y; Du Y; Wang Q; Ansari AA; Ding H; Wang Q; Yang P Anal Chem; 2024 May; 96(21):8665-8673. PubMed ID: 38722711 [TBL] [Abstract][Full Text] [Related]
24. Flow-electrochemical synthesis of Prussian Blue based nanozyme 'artificial peroxidase'. Komkova MA; Vetoshev KR; Andreev EA; Karyakin AA Dalton Trans; 2021 Sep; 50(33):11385-11389. PubMed ID: 34612266 [TBL] [Abstract][Full Text] [Related]
25. Enhancing Enzyme-like Activities of Prussian Blue Analog Nanocages by Molybdenum Doping: Toward Cytoprotecting and Online Optical Hydrogen Sulfide Monitoring. Wang C; Ren G; Yuan B; Zhang W; Lu M; Liu J; Li K; Lin Y Anal Chem; 2020 Jun; 92(11):7822-7830. PubMed ID: 32378404 [TBL] [Abstract][Full Text] [Related]
26. Mn doped Prussian blue nanoparticles for T Tao Q; He G; Ye S; Zhang D; Zhang Z; Qi L; Liu R J Nanobiotechnology; 2022 Jan; 20(1):18. PubMed ID: 34983564 [TBL] [Abstract][Full Text] [Related]
27. Prussian Blue: A Nanozyme with Versatile Catalytic Properties. Estelrich J; Busquets MA Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206067 [TBL] [Abstract][Full Text] [Related]
28. Metal-organic framework (MOF)-derived flower-like Ni-MOF@NiV-layered double hydroxides as peroxidase mimetics for colorimetric detection of hydroquinone. He Y; Feng M; Zhang X; Huang Y Anal Chim Acta; 2023 Dec; 1283():341959. PubMed ID: 37977784 [TBL] [Abstract][Full Text] [Related]
29. Hemin@carbon dot hybrid nanozymes with peroxidase mimicking properties for dual (colorimetric and fluorometric) sensing of hydrogen peroxide, glucose and xanthine. Su L; Cai Y; Wang L; Dong W; Mao G; Li Y; Zhao M; Ma Y; Zhang H Mikrochim Acta; 2020 Jan; 187(2):132. PubMed ID: 31942660 [TBL] [Abstract][Full Text] [Related]
30. CoMoO Wang Z; Ju P; Zhang Y; Jiang F; Ding H; Sun C Mikrochim Acta; 2020 Jul; 187(8):424. PubMed ID: 32621131 [TBL] [Abstract][Full Text] [Related]
31. Fe/C magnetic nanocubes with enhanced peroxidase mimetic activity for colorimetric determination of hydrogen peroxide and glucose. Yang F; Jiang G; Yan F; Chang Q Mikrochim Acta; 2019 Jun; 186(7):417. PubMed ID: 31187255 [TBL] [Abstract][Full Text] [Related]
32. Magnetic zirconium-based Prussian blue analog nanozyme: enhanced peroxidase-mimicking activity and colorimetric sensing of phosphate ion. Zhang G; Yu K; Zhou B; Wang J; Zheng C; Qu L; Chai H; Zhang X Mikrochim Acta; 2022 May; 189(6):220. PubMed ID: 35578124 [TBL] [Abstract][Full Text] [Related]
33. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. Yuan A; Lu Y; Zhang X; Chen Q; Huang Y J Mater Chem B; 2020 Oct; 8(40):9295-9303. PubMed ID: 32959035 [TBL] [Abstract][Full Text] [Related]
34. Optimizing Colorimetric Assay Based on V₂O₅ Nanozymes for Sensitive Detection of H₂O₂ and Glucose. Sun J; Li C; Qi Y; Guo S; Liang X Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110794 [TBL] [Abstract][Full Text] [Related]
35. Manganese-Based Nanozymes: Preparation, Catalytic Mechanisms, and Biomedical Applications. Tang M; Zhang Z; Sun T; Li B; Wu Z Adv Healthc Mater; 2022 Nov; 11(21):e2201733. PubMed ID: 36050895 [TBL] [Abstract][Full Text] [Related]
36. A rational study of the influence of Mn Cahu M; Ali LMA; Sene S; Long J; Camerel F; Ciancone M; Salles F; Chopineau J; Devoisselle JM; Felix G; Cubedo N; Rossel M; Guari Y; Bettache N; Larionova J; Gary-Bobo M J Mater Chem B; 2021 Dec; 9(47):9670-9683. PubMed ID: 34726228 [TBL] [Abstract][Full Text] [Related]
37. Inhibition effect of p-d orbital hybridized PtSn nanozymes for colorimetric sensor array of antioxidants. Jia X; Jiao L; Li R; Yan D; Hu L; Chen C; Li X; Zhai Y; Lu X Biosens Bioelectron; 2024 Oct; 261():116468. PubMed ID: 38852326 [TBL] [Abstract][Full Text] [Related]
38. Protein-sized nanozymes «artificial peroxidase» based on template catalytic synthesis of Prussian Blue. Nikitina VN; Zavolskova MD; Karyakin AA Bioelectrochemistry; 2023 Feb; 149():108275. PubMed ID: 36228395 [TBL] [Abstract][Full Text] [Related]
39. Nanozyme Based on Dispersion of Hemin by Graphene Quantum Dots for Colorimetric Detection of Glutathione. Li Z; Deng X; Hong X; Zhao S Molecules; 2022 Oct; 27(20):. PubMed ID: 36296372 [TBL] [Abstract][Full Text] [Related]
40. Iron-carbon dots embedded in molybdenum single-atom nanoflowers as multifunctional nanozyme for dual-mode detection of hydrogen peroxide and uric acid. Chen J; Lian T; Liu S; Zhong J; Cheng R; Tang X; Xu P; Qiu P J Colloid Interface Sci; 2024 Aug; 667():450-459. PubMed ID: 38643742 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]