These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38824885)

  • 1. Extraction of rare earth Eu from waste blue phosphor strengthened by microwave alkali roasting.
    Liu C; Luo W; Li Y; Wang Z; Xu S; Wang X
    J Environ Manage; 2024 Jun; 362():121303. PubMed ID: 38824885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of rare earth elements from waste phosphors via alkali fusion roasting and controlled potential reduction leaching.
    Xie B; Liu C; Wei B; Wang R; Ren R
    Waste Manag; 2023 May; 163():43-51. PubMed ID: 37001311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.
    Liu H; Zhang S; Pan D; Tian J; Yang M; Wu M; Volinsky AA
    J Hazard Mater; 2014 May; 272():96-101. PubMed ID: 24681591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decomposition behavior and reaction mechanism of Ce
    Hua Z; Geng A; Tang Z; Zhao Z; Liu H; Yao Y; Yang Y
    J Environ Manage; 2019 Nov; 249():109383. PubMed ID: 31419671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition Process of Nonoxidative Microwave Radiation Roasting of a Mixed Rare Earth Concentrate with Sodium Carbonate.
    Tian Y; Xu Y; Guan W; Zheng Q; Dai Y; Ma S; Li Y
    ACS Omega; 2021 Oct; 6(42):28119-28130. PubMed ID: 34723010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonoxidative Microwave Radiation Roasting of Bastnasite Concentrate and Kinetics of Hydrochloric Acid Leaching Process.
    Zheng Q; Xu Y; Cui L; Ma S; Guan W
    ACS Omega; 2020 Oct; 5(41):26710-26719. PubMed ID: 33110997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Dy(3+) or Eu(2+) co-activator on a BaCa(SO4)2:Ce(3+) mixed alkaline earth sulfate phosphor.
    Kongre VC; Gedam SC; Dhoble SJ
    Luminescence; 2015 Dec; 30(8):1184-9. PubMed ID: 25783216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated process for the recovery of yttrium and europium from CRT phosphor waste.
    Forte F; Yurramendi L; Aldana JL; Onghena B; Binnemans K
    RSC Adv; 2019 Jan; 9(3):1378-1386. PubMed ID: 35518045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.
    Hu AH; Kuo CH; Huang LH; Su CC
    Waste Manag; 2017 Feb; 60():765-774. PubMed ID: 27810122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of rare earths from waste cathode ray tube (CRT) phosphor powder with organic and inorganic ligands.
    Alvarado-Hernández L; Lapidus GT; González F
    Waste Manag; 2019 Jul; 95():53-58. PubMed ID: 31351639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rare earth elements recovery from secondary wastes by solid-state chlorination and selective organic leaching.
    Pavón S; Lorenz T; Fortuny A; Sastre AM; Bertau M
    Waste Manag; 2021 Mar; 122():55-63. PubMed ID: 33486303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of rare earths from the green lamp phosphor LaPO
    Gijsemans L; Forte F; Onghena B; Binnemans K
    RSC Adv; 2018 Jul; 8(46):26349-26355. PubMed ID: 35541950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, persistent luminescence, and thermoluminescence properties of yellow Sr3SiO5:Eu2+,RE3+ (RE=Ce, Nd, Dy, Ho, Er, Tm, Yb) and orange-red Sr(3-x)Ba(x)SiO5:Eu2+, Dy3+ phosphor.
    Li Y; Li B; Ni C; Yuan S; Wang J; Tang Q; Su Q
    Chem Asian J; 2014 Feb; 9(2):494-9. PubMed ID: 24203579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled Synthesis of Tb
    Zhu D; Li J; Guo X; Li Q; Wu H; Meng L; Liu Z
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30791537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An active dealkalization of red mud with roasting and water leaching.
    Zhu X; Li W; Guan X
    J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THERMOLUMINESCENCE SPECTRA AND DOSE RESPONSES OF SrSO4 PHOSPHORS DOPED WITH RARE EARTHS (Eu, Dy, Tm) AND PHOSPHORUS.
    Tang Q; Tang H; Luo D; Zhang C; Guo J; Wu H
    Radiat Prot Dosimetry; 2019 Dec; 187(2):164-173. PubMed ID: 31251359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted sintering synthesis of greenish-yellow emitting Sr
    Lee WC; Park JY; Yang HK; Kwak M; Moon BK; Jang KW
    Luminescence; 2018 Sep; 33(6):1081-1086. PubMed ID: 29927536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.