These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38825188)

  • 1. Actin depolymerizing factor destrin governs cell migration in neural development during Xenopus embryogenesis.
    Kim Y; Lee HK; Park KY; Ismail T; Lee H; Ryu HY; Cho DH; Kwon TK; Park TJ; Kwon T; Lee HS
    Mol Cells; 2024 Jun; 47(6):100076. PubMed ID: 38825188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation.
    Liao KA; Rangarajan KV; Bai X; Taylor JM; Mack CP
    Am J Physiol Heart Circ Physiol; 2021 Nov; 321(5):H893-H904. PubMed ID: 34559579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling.
    Hong CS; Saint-Jeannet JP
    Dev Biol; 2018 Oct; 442(1):162-172. PubMed ID: 30016640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis.
    Kuure S; Cebrian C; Machingo Q; Lu BC; Chi X; Hyink D; D'Agati V; Gurniak C; Witke W; Costantini F
    PLoS Genet; 2010 Oct; 6(10):e1001176. PubMed ID: 21060807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration.
    Gurniak CB; Perlas E; Witke W
    Dev Biol; 2005 Feb; 278(1):231-41. PubMed ID: 15649475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum response factor: positive and negative regulation of an epithelial gene expression network in the destrin mutant cornea.
    Kawakami-Schulz SV; Verdoni AM; Sattler SG; Jessen E; Kao WW; Ikeda A; Ikeda S
    Physiol Genomics; 2014 Apr; 46(8):277-89. PubMed ID: 24550211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin-X is required for cranial neural crest cell migration in Xenopus laevis.
    Hwang YS; Luo T; Xu Y; Sargent TD
    Dev Dyn; 2009 Oct; 238(10):2522-9. PubMed ID: 19718754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A time-resolved single-cell roadmap of the logic driving anterior neural crest diversification from neural border to migration stages.
    Kotov A; Seal S; Alkobtawi M; Kappès V; Ruiz SM; Arbès H; Harland RM; Peshkin L; Monsoro-Burq AH
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2311685121. PubMed ID: 38683994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis.
    Kiem LM; Dietmann P; Linnemann A; Schmeisser MJ; Kühl SJ
    Dev Biol; 2017 Mar; 423(1):66-76. PubMed ID: 28104388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.
    Marchak A; Grant PA; Neilson KM; Datta Majumdar H; Yaklichkin S; Johnson D; Moody SA
    Dev Biol; 2017 Sep; 429(1):213-224. PubMed ID: 28663133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.
    Pieper M; Ahrens K; Rink E; Peter A; Schlosser G
    Development; 2012 Mar; 139(6):1175-87. PubMed ID: 22318231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of destrin mutations on the gene expression profile in vivo.
    Verdoni AM; Aoyama N; Ikeda A; Ikeda S
    Physiol Genomics; 2008 Jun; 34(1):9-21. PubMed ID: 18381839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latrophilin2 is involved in neural crest cell migration and placode patterning in Xenopus laevis.
    Yokote N; Suzuki-Kosaka MY; Michiue T; Hara T; Tanegashima K
    Int J Dev Biol; 2019; 63(1-2):29-35. PubMed ID: 30919913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis.
    Exner CRT; Kim AY; Mardjuki SM; Harland RM
    Dev Biol; 2017 May; 425(1):33-43. PubMed ID: 28322736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state.
    Nagatomo K; Hashimoto C
    Dev Dyn; 2007 Jun; 236(6):1475-83. PubMed ID: 17436284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis.
    Barnett C; Yazgan O; Kuo HC; Malakar S; Thomas T; Fitzgerald A; Harbour W; Henry JJ; Krebs JE
    Mech Dev; 2012; 129(9-12):324-38. PubMed ID: 22691402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CHD7 cooperates with PBAF to control multipotent neural crest formation.
    Bajpai R; Chen DA; Rada-Iglesias A; Zhang J; Xiong Y; Helms J; Chang CP; Zhao Y; Swigut T; Wysocka J
    Nature; 2010 Feb; 463(7283):958-62. PubMed ID: 20130577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone.
    Gee ST; Milgram SL; Kramer KL; Conlon FL; Moody SA
    PLoS One; 2011; 6(6):e20309. PubMed ID: 21687713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcription factor Sox9 is required for cranial neural crest development in Xenopus.
    Spokony RF; Aoki Y; Saint-Germain N; Magner-Fink E; Saint-Jeannet JP
    Development; 2002 Jan; 129(2):421-32. PubMed ID: 11807034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folate receptor 1 is necessary for neural plate cell apical constriction during
    Balashova OA; Visina O; Borodinsky LN
    Development; 2017 Apr; 144(8):1518-1530. PubMed ID: 28255006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.