BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38825248)

  • 1. Significantly underestimated traffic-related ammonia emissions in Chinese megacities: Evidence from satellite observations during COVID-19 lockdowns.
    Chen P; Wang Q; Shao M; Liu R
    Chemosphere; 2024 Aug; 361():142497. PubMed ID: 38825248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vehicular Ammonia Emissions Significantly Contribute to Urban PM
    Wang Y; Wen Y; Zhang S; Zheng G; Zheng H; Chang X; Huang C; Wang S; Wu Y; Hao J
    Environ Sci Technol; 2023 Feb; 57(7):2698-2705. PubMed ID: 36700651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen isotopic characteristics of aerosol ammonium in a Chinese megacity indicate the reduction from vehicle emissions during the lockdown period.
    Li Z; Xiao H; Walters WW; Hastings MG; Min J; Song L; Lu W; Wu L; Yan W; Liu S; Fang Y
    Sci Total Environ; 2024 Apr; 922():171265. PubMed ID: 38417516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of COVID-19 restrictions on the concentration and source apportionment of atmospheric ammonia (NH
    Cui L
    Sci Total Environ; 2023 Jul; 881():163443. PubMed ID: 37061056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-World Vehicle Emissions Characterization for the Shing Mun Tunnel in Hong Kong and Fort McHenry Tunnel in the United States.
    Wang X; Khlystov A; Ho KF; Campbell D; Chow JC; Kohl SD; Watson JG; Lee SF; Chen LA; Lu M; Ho SSH
    Res Rep Health Eff Inst; 2019 Mar; 2019(199):5-52. PubMed ID: 31663714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the dynamics of gaseous ammonia and ammonium aerosols during the COVID-19 lockdown in urban Beijing using machine learning models.
    Lyu Y; Zhang Q; Sun Q; Gu M; He Y; Walters WW; Sun Y; Pan Y
    Sci Total Environ; 2023 Dec; 905():166946. PubMed ID: 37696398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source-Receptor Relationship Revealed by the Halted Traffic and Aggravated Haze in Beijing during the COVID-19 Lockdown.
    Lv Z; Wang X; Deng F; Ying Q; Archibald AT; Jones RL; Ding Y; Cheng Y; Fu M; Liu Y; Man H; Xue Z; He K; Hao J; Liu H
    Environ Sci Technol; 2020 Dec; 54(24):15660-15670. PubMed ID: 33225703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A traffic-induced shift of ultrafine particle sources under COVID-19 soft lockdown in a subtropical urban area.
    Chen TL; Hsiao TC; Chen AY; Chang KE; Lin TC; Griffith SM; Chou CC
    Environ Int; 2024 May; 187():108658. PubMed ID: 38640612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of light-duty versus heavy-duty diesel on-road mobile source emissions using general additive models applied to traffic volume and air quality data and COVID-19 responses.
    Orth S; Russell AG
    J Air Waste Manag Assoc; 2023 May; 73(5):374-393. PubMed ID: 37171913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional transport and urban emissions are important ammonia contributors in Beijing, China.
    Pu W; Ma Z; Collett JL; Guo H; Lin W; Cheng Y; Quan W; Li Y; Dong F; He D
    Environ Pollut; 2020 Oct; 265(Pt A):115062. PubMed ID: 32806405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying road traffic impact on air quality in urban areas: A Covid19-induced lockdown analysis in Italy.
    Gualtieri G; Brilli L; Carotenuto F; Vagnoli C; Zaldei A; Gioli B
    Environ Pollut; 2020 Dec; 267():115682. PubMed ID: 33254679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions.
    Sokhi RS; Singh V; Querol X; Finardi S; Targino AC; Andrade MF; Pavlovic R; Garland RM; Massagué J; Kong S; Baklanov A; Ren L; Tarasova O; Carmichael G; Peuch VH; Anand V; Arbilla G; Badali K; Beig G; Belalcazar LC; Bolignano A; Brimblecombe P; Camacho P; Casallas A; Charland JP; Choi J; Chourdakis E; Coll I; Collins M; Cyrys J; da Silva CM; Di Giosa AD; Di Leo A; Ferro C; Gavidia-Calderon M; Gayen A; Ginzburg A; Godefroy F; Gonzalez YA; Guevara-Luna M; Haque SM; Havenga H; Herod D; Hõrrak U; Hussein T; Ibarra S; Jaimes M; Kaasik M; Khaiwal R; Kim J; Kousa A; Kukkonen J; Kulmala M; Kuula J; La Violette N; Lanzani G; Liu X; MacDougall S; Manseau PM; Marchegiani G; McDonald B; Mishra SV; Molina LT; Mooibroek D; Mor S; Moussiopoulos N; Murena F; Niemi JV; Noe S; Nogueira T; Norman M; Pérez-Camaño JL; Petäjä T; Piketh S; Rathod A; Reid K; Retama A; Rivera O; Rojas NY; Rojas-Quincho JP; San José R; Sánchez O; Seguel RJ; Sillanpää S; Su Y; Tapper N; Terrazas A; Timonen H; Toscano D; Tsegas G; Velders GJM; Vlachokostas C; von Schneidemesser E; Vpm R; Yadav R; Zalakeviciute R; Zavala M
    Environ Int; 2021 Dec; 157():106818. PubMed ID: 34425482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fossil fuel-related emissions were the major source of NH
    Zhang Z; Zeng Y; Zheng N; Luo L; Xiao H; Xiao H
    Environ Pollut; 2020 Jan; 256():113428. PubMed ID: 31706780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors.
    Gao C; Li S; Liu M; Zhang F; Achal V; Tu Y; Zhang S; Cai C
    Sci Total Environ; 2021 Jun; 773():145545. PubMed ID: 33940731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PM
    Wu Y; Gu B; Erisman JW; Reis S; Fang Y; Lu X; Zhang X
    Environ Pollut; 2016 Nov; 218():86-94. PubMed ID: 27552041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Describing the trend of ammonia, particulate matter and nitrogen oxides: The role of livestock activities in northern Italy during Covid-19 quarantine.
    Lovarelli D; Conti C; Finzi A; Bacenetti J; Guarino M
    Environ Res; 2020 Dec; 191():110048. PubMed ID: 32818500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why did air quality experience little improvement during the COVID-19 lockdown in megacities, northeast China?
    Fu D; Shi X; Zuo J; Yabo SD; Li J; Li B; Li H; Lu L; Tang B; Qi H; Ma J
    Environ Res; 2023 Mar; 221():115282. PubMed ID: 36639012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Covid-19 lockdown on airborne particulate matter in Rome, Italy: A magnetic point of view.
    Winkler A; Amoroso A; Di Giosa A; Marchegiani G
    Environ Pollut; 2021 Dec; 291():118191. PubMed ID: 34547660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic.
    Hudda N; Simon MC; Patton AP; Durant JL
    Sci Total Environ; 2020 Nov; 742():140931. PubMed ID: 32747009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.