These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38825785)

  • 1. An activatable azophenyl fluorescent probe for hypoxic fluorescence imaging in living cells.
    Liu Z; Zhang Z; Li J; Zhu G; Li Q
    Luminescence; 2024 Jun; 39(6):e4798. PubMed ID: 38825785
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Zhou Y; Yang S; Guo J; Dong H; Yin K; Huang WT; Yang R
    Anal Chem; 2020 Apr; 92(8):5787-5794. PubMed ID: 32192346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azo-Based Hypoxia-Responsive Self-Assembly Near-Infrared Fluorescent Nanoprobe for In Vivo Real-Time Bioimaging of Tumors.
    Liu W; Yao X; Zhu W; Wang J; Zhou F; Qian X; Tiemuer A; Yang S; Wang HY; Liu Y
    ACS Appl Bio Mater; 2021 Mar; 4(3):2752-2758. PubMed ID: 35014314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizable synthesis of bioresponsive near-infrared fluorescent probes: sulfonated heptamethine cyanine prototype for imaging cell hypoxia.
    Atkinson KM; Morsby JJ; Kommidi SSR; Smith BD
    Org Biomol Chem; 2021 May; 19(18):4100-4106. PubMed ID: 33978049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent Probe Based on Azobenzene-Cyclopalladium for the Selective Imaging of Endogenous Carbon Monoxide under Hypoxia Conditions.
    Li Y; Wang X; Yang J; Xie X; Li M; Niu J; Tong L; Tang B
    Anal Chem; 2016 Nov; 88(22):11154-11159. PubMed ID: 27748113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for Tumor Hypoxia Imaging Based on Aggregation-Induced Emission Fluorogens.
    Xue T; Shen J; Shao K; Wang W; Wu B; He Y
    Chemistry; 2020 Feb; 26(12):2521-2528. PubMed ID: 31692097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activatable fluorescent probe based on aggregation-induced emission for detecting hypoxia-related pathological conditions.
    Xu L; Sun L; Zeng F; Wu S
    Anal Chim Acta; 2020 Aug; 1125():152-161. PubMed ID: 32674761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescent nanoprobe based on azoreductase-responsive metal-organic frameworks for imaging VEGF mRNA under hypoxic conditions.
    Liu N; Zou Z; Liu J; Zhu C; Zheng J; Yang R
    Analyst; 2019 Oct; 144(21):6254-6261. PubMed ID: 31560359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia-Responsive Molecular Probe Lighted up by Peptide Self-Assembly for Cancer Cell Imaging.
    Ai S; Dong W; Li J; Yang Z
    J Biomed Nanotechnol; 2022 Apr; 18(4):1019-1027. PubMed ID: 35854443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Two-Photon Fluorescent Probe for Nitroreductase Detection and Hypoxia Imaging in Tumor Cells and Tissues.
    Zhang J; Liu HW; Hu XX; Li J; Liang LH; Zhang XB; Tan W
    Anal Chem; 2015 Dec; 87(23):11832-9. PubMed ID: 26514276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a highly efficient nitroaryl group for detection of nitroreductase and imaging of hypoxic tumor cells.
    Wang S; Wu X; Zhang Y; Zhang D; Xie B; Pan Z; Ouyang K; Peng T
    Org Biomol Chem; 2021 Apr; 19(15):3469-3478. PubMed ID: 33899896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia.
    Kiyose K; Hanaoka K; Oushiki D; Nakamura T; Kajimura M; Suematsu M; Nishimatsu H; Yamane T; Terai T; Hirata Y; Nagano T
    J Am Chem Soc; 2010 Nov; 132(45):15846-8. PubMed ID: 20979363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-responsive AIEgens for precise disease theranostics.
    Liu D; Liang M; Fan A; Bing W; Qi J
    Luminescence; 2024 Jan; 39(1):e4659. PubMed ID: 38286609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A turn-on fluorescent probe for tumor hypoxia imaging in living cells.
    Cai Q; Yu T; Zhu W; Xu Y; Qian X
    Chem Commun (Camb); 2015 Oct; 51(79):14739-41. PubMed ID: 26295073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for in vivo nitroreductase imaging.
    Gebremedhin KH; Li Y; Yao Q; Xiao M; Gao F; Fan J; Du J; Long S; Peng X
    J Mater Chem B; 2019 Jan; 7(3):408-414. PubMed ID: 32254728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo.
    Ding N; Li Z; Tian X; Zhang J; Guo K; Wang P
    Chem Commun (Camb); 2019 Oct; 55(87):13172-13175. PubMed ID: 31620737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy.
    Liu J; Ding G; Chen S; Xue C; Chen M; Wu X; Yuan Q; Zheng J; Yang R
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9681-9690. PubMed ID: 33606499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a fluorescent probe containing benzofuranone moiety for imaging sulphite in living hypoxia pulmonary cells.
    Xie A; Shi J; Yang W
    Luminescence; 2024 Aug; 39(8):e4854. PubMed ID: 39103184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual-function fluorescent probe for monitoring the degrees of hypoxia in living cells via the imaging of nitroreductase and adenosine triphosphate.
    Fang Y; Shi W; Hu Y; Li X; Ma H
    Chem Commun (Camb); 2018 May; 54(43):5454-5457. PubMed ID: 29749411
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.