These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38826214)

  • 1. Ice formation and its elimination in cryopreservation of oocytes.
    Abdelhady AW; Mittan-Moreau DW; Crane PL; McLeod MJ; Cheong SH; Thorne RE
    Res Sq; 2024 May; ():. PubMed ID: 38826214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ice formation and its elimination in cryopreservation of oocytes.
    Abdelhady AW; Mittan-Moreau DW; Crane PL; McLeod MJ; Cheong SH; Thorne RE
    Sci Rep; 2024 Aug; 14(1):18809. PubMed ID: 39138273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice formation and its elimination in cryopreservation of bovine oocytes.
    Abdelhady AW; Mittan-Moreau DW; Crane PL; McLeod MJ; Cheong SH; Thorne RE
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Japanese Society for Animal Reproduction: award for outstanding research 2002. Cryopreservation of follicular oocytes and preimplantation embryos in cattle and horses.
    Hochi S
    J Reprod Dev; 2003 Feb; 49(1):13-21. PubMed ID: 14967945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A guide to successful mL to L scale vitrification and rewarming.
    Gangwar L; Phatak SS; Etheridge M; Bischof JC
    Cryo Letters; 2022; 43(6):316-321. PubMed ID: 36629824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Ice Crystal Behavior in Mouse Oocytes During High-Speed Quench Cooling and Ice Inhibition by Antifreezing Hydrogels.
    Li X; Zhang S; Zhang Y; Zhou X
    Biopreserv Biobank; 2024 Aug; 22(4):404-412. PubMed ID: 38484300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of mouse oocytes after being cooled in a vitrification solution to -196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification.
    Mazur P; Seki S
    Cryobiology; 2011 Feb; 62(1):1-7. PubMed ID: 21055397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
    Davidson AF; Benson JD; Higgins AZ
    Theor Biol Med Model; 2014 Mar; 11():13. PubMed ID: 24649826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving vitrification efficiency of human in vitro matured oocytes by the addition of LEA proteins.
    Li L; Bi X; Wu X; Chen Z; Cao Y; Zhao G
    Hum Reprod; 2024 Jun; 39(6):1275-1290. PubMed ID: 38592717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions.
    Hopkins JB; Badeau R; Warkentin M; Thorne RE
    Cryobiology; 2012 Dec; 65(3):169-78. PubMed ID: 22728046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure.
    Seki S; Mazur P
    Cryobiology; 2009 Aug; 59(1):75-82. PubMed ID: 19427303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of membrane transport models to design cryopreservation procedures for oocytes.
    Caliskan S; Liu D; Oldenhof H; Sieme H; Wolkers WF
    Anim Reprod Sci; 2024 Aug; 267():107536. PubMed ID: 38908169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice.
    Seki S; Mazur P
    Biol Reprod; 2008 Oct; 79(4):727-37. PubMed ID: 18562703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos.
    Edgar DH; Gook DA
    Hum Reprod Update; 2012; 18(5):536-54. PubMed ID: 22537859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental basis of oocyte vitrification.
    Smith GD; Motta EE; Serafini P
    Reprod Biomed Online; 2011 Sep; 23(3):298-306. PubMed ID: 21763203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and activation energy of recrystallization of intracellular ice in mouse oocytes subjected to interrupted rapid cooling.
    Seki S; Mazur P
    Cryobiology; 2008 Jun; 56(3):171-80. PubMed ID: 18359013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subzero water permeability parameters of mouse spermatozoa in the presence of extracellular ice and cryoprotective agents.
    Devireddy RV; Swanlund DJ; Roberts KP; Bischof JC
    Biol Reprod; 1999 Sep; 61(3):764-75. PubMed ID: 10456855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of cryopreservation media thermophysical characteristics after ultra-rapid cooling through differential scanning calorimetry.
    Amini M; Benson JD
    Cryobiology; 2024 Sep; 116():104939. PubMed ID: 38971573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of intracellular ice formation, vitrification of cell water, and recrystallisation of intracellular ice on the survival of mouse embryos and oocytes.
    Mazur P; Paredes E
    Reprod Fertil Dev; 2016 Mar; ():. PubMed ID: 26927709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of survivability and developmental ability in vitrified rat oocytes.
    Nakagawa Y; Kaneko T
    Cryobiology; 2024 Jun; 115():104882. PubMed ID: 38452847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.