These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38826348)

  • 1. Open-source machine learning pipeline automatically flags instances of acute respiratory distress syndrome from electronic health records.
    Morales FL; Xu F; Lee HA; Navarro HT; Bechel MA; Cameron EL; Kelso J; Weiss CH; Nunes Amaral LA
    medRxiv; 2024 May; ():. PubMed ID: 38826348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning to detect acute respiratory distress syndrome on chest radiographs: a retrospective study with external validation.
    Sjoding MW; Taylor D; Motyka J; Lee E; Co I; Claar D; McSparron JI; Ansari S; Kerlin MP; Reilly JP; Shashaty MGS; Anderson BJ; Jones TK; Drebin HM; Ittner CAG; Meyer NJ; Iwashyna TJ; Ward KR; Gillies CE
    Lancet Digit Health; 2021 Jun; 3(6):e340-e348. PubMed ID: 33893070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms.
    Wang R; Cai L; Zhang J; He M; Xu J
    Medicina (Kaunas); 2023 Jan; 59(1):. PubMed ID: 36676795
    [No Abstract]   [Full Text] [Related]  

  • 4. Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS).
    Le S; Pellegrini E; Green-Saxena A; Summers C; Hoffman J; Calvert J; Das R
    J Crit Care; 2020 Dec; 60():96-102. PubMed ID: 32777759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study.
    Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y
    Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint classification and segmentation for an interpretable diagnosis of acute respiratory distress syndrome from chest x-rays.
    Yahyatabar M; Jouvet P; Cheriet F
    J Med Imaging (Bellingham); 2023 Sep; 10(5):054504. PubMed ID: 37854097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Development and Validation of Simplified Machine Learning Algorithms to Predict Prognosis of Hospitalized Patients With COVID-19: Multicenter, Retrospective Study.
    He F; Page JH; Weinberg KR; Mishra A
    J Med Internet Res; 2022 Jan; 24(1):e31549. PubMed ID: 34951865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating construct validity of computable acute respiratory distress syndrome definitions in adults hospitalized with COVID-19: an electronic health records based approach.
    Sathe NA; Xian S; Mabrey FL; Crosslin DR; Mooney SD; Morrell ED; Lybarger K; Yetisgen M; Jarvik GP; Bhatraju PK; Wurfel MM
    BMC Pulm Med; 2023 Aug; 23(1):292. PubMed ID: 37559024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation and utility of ARDS subphenotypes identified by machine-learning models using clinical data: an observational, multicohort, retrospective analysis.
    Maddali MV; Churpek M; Pham T; Rezoagli E; Zhuo H; Zhao W; He J; Delucchi KL; Wang C; Wickersham N; McNeil JB; Jauregui A; Ke S; Vessel K; Gomez A; Hendrickson CM; Kangelaris KN; Sarma A; Leligdowicz A; Liu KD; Matthay MA; Ware LB; Laffey JG; Bellani G; Calfee CS; Sinha P;
    Lancet Respir Med; 2022 Apr; 10(4):367-377. PubMed ID: 35026177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative approach for the analysis of clinician recognition of acute respiratory distress syndrome using electronic health record data.
    Bechel MA; Pah AR; Shi H; Mehrotra S; Persell SD; Weiner S; Wunderink RG; Nunes Amaral LA; Weiss CH
    PLoS One; 2019; 14(9):e0222826. PubMed ID: 31539417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients.
    Lin S; Yang M; Liu C; Wang Z; Long X
    Int J Med Inform; 2024 Jun; 186():105397. PubMed ID: 38507979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External Validity of Electronic Sniffers for Automated Recognition of Acute Respiratory Distress Syndrome.
    McKown AC; Brown RM; Ware LB; Wanderer JP
    J Intensive Care Med; 2019; 34(11-12):946-954. PubMed ID: 28737058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Predictive value of machine learning for in-hospital mortality for trauma-induced acute respiratory distress syndrome patients: an analysis using the data from MIMIC III].
    Tang R; Tang W; Wang D
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Mar; 34(3):260-264. PubMed ID: 35574742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multitask Learning With Recurrent Neural Networks for Acute Respiratory Distress Syndrome Prediction Using Only Electronic Health Record Data: Model Development and Validation Study.
    Lam C; Thapa R; Maharjan J; Rahmani K; Tso CF; Singh NP; Casie Chetty S; Mao Q
    JMIR Med Inform; 2022 Jun; 10(6):e36202. PubMed ID: 35704370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome.
    Wei S; Zhang Y; Dong H; Chen Y; Wang X; Zhu X; Zhang G; Guo S
    BMC Pulm Med; 2023 Oct; 23(1):370. PubMed ID: 37789305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning From Past Respiratory Infections to Predict COVID-19 Outcomes: Retrospective Study.
    Sang S; Sun R; Coquet J; Carmichael H; Seto T; Hernandez-Boussard T
    J Med Internet Res; 2021 Feb; 23(2):e23026. PubMed ID: 33534724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME.
    Zhou Y; Feng J; Mei S; Zhong H; Tang R; Xing S; Gao Y; Xu Q; He Z
    Shock; 2023 Mar; 59(3):352-359. PubMed ID: 36625493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning for patient risk stratification for acute respiratory distress syndrome.
    Zeiberg D; Prahlad T; Nallamothu BK; Iwashyna TJ; Wiens J; Sjoding MW
    PLoS One; 2019; 14(3):e0214465. PubMed ID: 30921400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: Generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases.
    Naseri H; Kafi K; Skamene S; Tolba M; Faye MD; Ramia P; Khriguian J; Kildea J
    J Biomed Inform; 2021 Aug; 120():103864. PubMed ID: 34265451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analysis of clinical treatment of acute respiratory distress syndrome assisted by artificial intelligence].
    Yang Z; Zu Y; Luo Y; Du Q
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):369-376. PubMed ID: 38813630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.