These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 38826530)

  • 1. A Comprehensive Review on Strategies for Enhancing the Performance of Polyanionic-Based Sodium-Ion Battery Cathodes.
    Joy A; Kumari K; Parween F; Sultana MS; Nayak GC
    ACS Omega; 2024 May; 9(21):22509-22531. PubMed ID: 38826530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries.
    Yang W; Liu Q; Zhao Y; Mu D; Tan G; Gao H; Li L; Chen R; Wu F
    Small Methods; 2022 Sep; 6(9):e2200555. PubMed ID: 35780504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Distance Between Phosphate-Based Polyanionic Compounds and Their Practical Application For Sodium-Ion Batteries.
    Hao Z; Shi X; Yang Z; Zhou X; Li L; Ma CQ; Chou S
    Adv Mater; 2024 Feb; 36(7):e2305135. PubMed ID: 37590909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered Oxide Cathodes for Sodium-Ion Batteries: Storage Mechanism, Electrochemistry, and Techno-economics.
    Zuo W; Innocenti A; Zarrabeitia M; Bresser D; Yang Y; Passerini S
    Acc Chem Res; 2023 Feb; 56(3):284-296. PubMed ID: 36696961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyanionic Compounds for Potassium-Ion Batteries.
    Hosaka T; Shimamura T; Kubota K; Komaba S
    Chem Rec; 2019 Apr; 19(4):735-745. PubMed ID: 30378257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Design of Cathode Materials for Na-Ion Batteries.
    Gupta P; Pushpakanth S; Haider MA; Basu S
    ACS Omega; 2022 Feb; 7(7):5605-5614. PubMed ID: 35224322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries.
    Singh S; Lochab S; Sharma L; Pralong V; Barpanda P
    Phys Chem Chem Phys; 2021 Sep; 23(34):18283-18299. PubMed ID: 34612373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition metal oxides as a cathode for indispensable Na-ion batteries.
    Kanwade A; Gupta S; Kankane A; Tiwari MK; Srivastava A; Kumar Satrughna JA; Chand Yadav S; Shirage PM
    RSC Adv; 2022 Aug; 12(36):23284-23310. PubMed ID: 36090429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doping Regulation in Polyanionic Compounds for Advanced Sodium-Ion Batteries.
    Xiao L; Ji F; Zhang J; Chen X; Fang Y
    Small; 2023 Jan; 19(1):e2205732. PubMed ID: 36373668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Lab to Application: Challenges and Opportunities in Achieving Fast Charging with Polyanionic Cathodes for Sodium-Ion Batteries.
    Lu X; Li S; Li Y; Wu F; Wu C; Bai Y
    Adv Mater; 2024 Jun; ():e2407359. PubMed ID: 38936413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode.
    Luo Y; Peng J; Yin S; Xue L; Yan Y
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress and Perspective: Na Ion Batteries Used at Low Temperatures.
    Li P; Hu N; Wang J; Wang S; Deng W
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanadium fluorophosphates: advanced cathode materials for next-generation secondary batteries.
    Xu S; Yang Y; Tang F; Yao Y; Lv X; Liu L; Xu C; Feng Y; Rui X; Yu Y
    Mater Horiz; 2023 Jun; 10(6):1901-1923. PubMed ID: 36942608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of Multicationic Redox Chemistry in Polyanionic Cathode by Increasing Entropy.
    Li H; Xu M; Long H; Zheng J; Zhang L; Li S; Guan C; Lai Y; Zhang Z
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202082. PubMed ID: 35778829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping Engineering in Electrode Material for Boosting the Performance of Sodium Ion Batteries.
    Kumar K; Kundu R
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):37346-37362. PubMed ID: 38920092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air-Stable Na
    Zhang Y; Zhang R; Huang Y
    Front Chem; 2019; 7():335. PubMed ID: 31157208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox.
    Yao W; Armstrong AR; Zhou X; Sougrati MT; Kidkhunthod P; Tunmee S; Sun C; Sattayaporn S; Lightfoot P; Ji B; Jiang C; Wu N; Tang Y; Cheng HM
    Nat Commun; 2019 Aug; 10(1):3483. PubMed ID: 31375663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries.
    Nathan MGT; Yu H; Kim GT; Kim JH; Cho JS; Kim J; Kim JK
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105882. PubMed ID: 35478355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.