These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38826754)

  • 41. Chaos control in a multiple delayed phytoplankton-zooplankton model with group defense and predator's interference.
    Sajan ; Dubey B
    Chaos; 2021 Aug; 31(8):083101. PubMed ID: 34470255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bifurcations, chaos, and multistability in a nonautonomous predator-prey model with fear.
    Hossain M; Pal S; Kumar Tiwari P; Pal N
    Chaos; 2021 Dec; 31(12):123134. PubMed ID: 34972329
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamical behaviours of discrete amensalism system with fear effects on first species.
    Li Q; Kashyap AJ; Zhu Q; Chen F
    Math Biosci Eng; 2024 Jan; 21(1):832-860. PubMed ID: 38303445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey.
    Banerjee J; Sasmal SK; Layek RK
    Biosystems; 2019 Jun; 180():19-37. PubMed ID: 30851345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.
    Kooi BW; Venturino E
    Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chaos in a nonautonomous eco-epidemiological model with delay.
    Samanta S; Tiwari PK; Alzahrani AK; Alshomrani AS
    Appl Math Model; 2020 Mar; 79():865-880. PubMed ID: 32287943
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporating prey refuge in a prey-predator model with a Holling type I functional response: random dynamics and population outbreaks.
    Gkana A; Zachilas L
    J Biol Phys; 2013 Sep; 39(4):587-606. PubMed ID: 23996405
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays.
    Song ZG; Xu J
    Cogn Neurodyn; 2013 Dec; 7(6):505-21. PubMed ID: 24427223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chaos and multi-layer attractors in asymmetric neural networks coupled with discrete fractional memristor.
    He S; Vignesh D; Rondoni L; Banerjee S
    Neural Netw; 2023 Oct; 167():572-587. PubMed ID: 37708779
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Fractional-Order Sinusoidal Discrete Map.
    Liu X; Tang D; Hong L
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A phytoplankton-zooplankton-fish model with chaos control: In the presence of fear effect and an additional food.
    Sajan ; Sasmal SK; Dubey B
    Chaos; 2022 Jan; 32(1):013114. PubMed ID: 35105117
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coexisting patterns of population oscillations: the degenerate Neimark-Sacker bifurcation as a generic mechanism.
    Guill C; Reichardt B; Drossel B; Just W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021910. PubMed ID: 21405866
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant-herbivore interactions mediated by plant toxicity.
    Feng Z; Liu R; DeAngelis DL
    Theor Popul Biol; 2008 May; 73(3):449-59. PubMed ID: 18262578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the equivalent classification of three-dimensional competitive Leslie/Gower models via the boundary dynamics on the carrying simplex.
    Jiang J; Niu L
    J Math Biol; 2017 Apr; 74(5):1223-1261. PubMed ID: 27639701
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A non-standard discretized SIS model of epidemics.
    Choiński M; Bodzioch M; Foryś U
    Math Biosci Eng; 2022 Jan; 19(1):115-133. PubMed ID: 34902983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stabilization in chaotic maps using hybrid chaos control procedure.
    Ashish ; Sajid M
    Heliyon; 2024 Jan; 10(2):e23984. PubMed ID: 38293387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Backward bifurcation, oscillations and chaos in an eco-epidemiological model with fear effect.
    Sha A; Samanta S; Martcheva M; Chattopadhyay J
    J Biol Dyn; 2019 Dec; 13(1):301-327. PubMed ID: 31046638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lyapunov exponent diagrams of a 4-dimensional Chua system.
    Stegemann C; Albuquerque HA; Rubinger RM; Rech PC
    Chaos; 2011 Sep; 21(3):033105. PubMed ID: 21974640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host.
    Bozkurt F; Yousef A; Baleanu D; Alzabut J
    Chaos Solitons Fractals; 2020 Sep; 138():109931. PubMed ID: 32536758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.