These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38826772)

  • 21. Eye-Tracking for Clinical Ophthalmology with Virtual Reality (VR): A Case Study of the HTC Vive Pro Eye's Usability.
    Sipatchin A; Wahl S; Rifai K
    Healthcare (Basel); 2021 Feb; 9(2):. PubMed ID: 33572072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hess Screen Revised: How Eye Tracking and Virtual Reality change Strabismus Assessment.
    Mehringer W; Wirth M; Risch F; Roth D; Michelson G; Eskofier B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2058-2062. PubMed ID: 34891693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interacting with virtual characters, objects and environments: investigating immersive virtual reality in rehabilitation.
    Bryant L; Stubbs P; Bailey B; Nguyen V; Bluff A; Hemsley B
    Disabil Rehabil Assist Technol; 2024 May; ():1-11. PubMed ID: 38781087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ARETT: Augmented Reality Eye Tracking Toolkit for Head Mounted Displays.
    Kapp S; Barz M; Mukhametov S; Sonntag D; Kuhn J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immersive Virtual Reality and Ocular Tracking for Brain Mapping During Awake Surgery: Prospective Evaluation Study.
    Casanova M; Clavreul A; Soulard G; Delion M; Aubin G; Ter Minassian A; Seguier R; Menei P
    J Med Internet Res; 2021 Mar; 23(3):e24373. PubMed ID: 33759794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eye movement characteristics and visual fatigue assessment of virtual reality games with different interaction modes.
    Fan L; Wang J; Li Q; Song Z; Dong J; Bao F; Wang X
    Front Neurosci; 2023; 17():1173127. PubMed ID: 37065908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of positive, negative and neutral stimuli in a virtual reality cognitive-motor rehabilitation task: a pilot study with stroke patients.
    Cameirão MS; Faria AL; Paulino T; Alves J; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):70. PubMed ID: 27503215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual Reality and Eye-Tracking Assessment, and Treatment of Unilateral Spatial Neglect: Systematic Review and Future Prospects.
    Kaiser AP; Villadsen KW; Samani A; Knoche H; Evald L
    Front Psychol; 2022; 13():787382. PubMed ID: 35391965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Hybrid Brain-Computer Interface for Virtual Reality Applications Using Steady-State Visual-Evoked Potential-Based Brain-Computer Interface and Electrooculogram-Based Eye Tracking for Increased Information Transfer Rate.
    Ha J; Park S; Im CH
    Front Neuroinform; 2022; 16():758537. PubMed ID: 35281718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EHTask: Recognizing User Tasks From Eye and Head Movements in Immersive Virtual Reality.
    Hu Z; Bulling A; Li S; Wang G
    IEEE Trans Vis Comput Graph; 2023 Apr; 29(4):1992-2004. PubMed ID: 34962869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Virtual Reality Simulation to Identify Vision-Related Disability in Patients With Glaucoma.
    Lam AKN; To E; Weinreb RN; Yu M; Mak H; Lai G; Chiu V; Wu K; Zhang X; Cheng TPH; Guo PY; Leung CKS
    JAMA Ophthalmol; 2020 May; 138(5):490-498. PubMed ID: 32191274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eye-dominance-guided Foveated Rendering.
    Meng X; Du R; Varshney A
    IEEE Trans Vis Comput Graph; 2020 May; 26(5):1972-1980. PubMed ID: 32086213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding cancer patient cohorts in virtual reality environment for better clinical decisions: a usability study.
    Qu Z; Nguyen QV; Lau CW; Johnston A; Kennedy PJ; Simoff S; Catchpoole D
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):295. PubMed ID: 38124044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A tutorial: Analyzing eye and head movements in virtual reality.
    Bischof WF; Anderson NC; Kingstone A
    Behav Res Methods; 2024 Dec; 56(8):8396-8421. PubMed ID: 39117987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manually locating physical and virtual reality objects.
    Chen KB; Kimmel RA; Bartholomew A; Ponto K; Gleicher ML; Radwin RG
    Hum Factors; 2014 Sep; 56(6):1163-76. PubMed ID: 25277024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Case for Studying Naturalistic Eye and Head Movements in Virtual Environments.
    Callahan-Flintoft C; Barentine C; Touryan J; Ries AJ
    Front Psychol; 2021; 12():650693. PubMed ID: 35035362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Change Blindness Phenomena for Virtual Reality Display Systems.
    Steinicke F; Bruder G; Hinrichs K; Willemsen P
    IEEE Trans Vis Comput Graph; 2011 Sep; 17(9):1223-33. PubMed ID: 21301028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gaze-based attention network analysis in a virtual reality classroom.
    Stark P; Hasenbein L; Kasneci E; Göllner R
    MethodsX; 2024 Jun; 12():102662. PubMed ID: 38577409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Block-building performance test using a virtual reality head-mounted display in children with intermittent exotropia.
    Chung SA; Choi J; Jeong S; Ko J
    Eye (Lond); 2021 Jun; 35(6):1758-1765. PubMed ID: 32873945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtual Reality Air Travel Training Using Apple iPhone X and Google Cardboard: A Feasibility Report with Autistic Adolescents and Adults.
    Miller IT; Miller CS; Wiederhold MD; Wiederhold BK
    Autism Adulthood; 2020 Dec; 2(4):325-333. PubMed ID: 36600956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.