These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38826772)
41. Measuring Virtual Reality Headset Resolution and Field of View: Implications for Vision Care Applications. Lynn MH; Luo G; Tomasi M; Pundlik S; E Houston K Optom Vis Sci; 2020 Aug; 97(8):573-582. PubMed ID: 32769841 [TBL] [Abstract][Full Text] [Related]
42. Eyes on me: Investigating the role and influence of eye-tracking data on user modeling in virtual reality. Jeong D; Jeong M; Yang U; Han K PLoS One; 2022; 17(12):e0278970. PubMed ID: 36580442 [TBL] [Abstract][Full Text] [Related]
43. Development of a data management tool for investigating multivariate space and free will experiences in virtual reality. Morie JF; Iyer K; Luigi DP; Williams J; Dozois A; Rizzo AS Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):319-31. PubMed ID: 16167194 [TBL] [Abstract][Full Text] [Related]
44. FixationNet: Forecasting Eye Fixations in Task-Oriented Virtual Environments. Hu Z; Bulling A; Li S; Wang G IEEE Trans Vis Comput Graph; 2021 May; 27(5):2681-2690. PubMed ID: 33750707 [TBL] [Abstract][Full Text] [Related]
45. To measure the amount of ocular deviation in strabismus patients with an eye-tracking virtual reality headset. Yeh PH; Liu CH; Sun MH; Chi SC; Hwang YS BMC Ophthalmol; 2021 Jun; 21(1):246. PubMed ID: 34088299 [TBL] [Abstract][Full Text] [Related]
46. Finding landmarks - An investigation of viewing behavior during spatial navigation in VR using a graph-theoretical analysis approach. Walter JL; Essmann L; König SU; König P PLoS Comput Biol; 2022 Jun; 18(6):e1009485. PubMed ID: 35666726 [TBL] [Abstract][Full Text] [Related]
47. Eye and head movements while looking at rotated scenes in VR. Session "Beyond the screen's edge" at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 19.8.2019. Anderson NC; Bischof WF J Eye Mov Res; 2019 Nov; 12(7):. PubMed ID: 33828771 [TBL] [Abstract][Full Text] [Related]
48. A systematic performance comparison of two Smooth Pursuit detection algorithms in Virtual Reality depending on target number, distance, and movement patterns. Freytag SC; Zechner R; Kamps M J Eye Mov Res; 2022; 15(3):. PubMed ID: 39139653 [TBL] [Abstract][Full Text] [Related]
49. Context matters during pick-and-place in VR: Impact on search and transport phases. Lukashova-Sanz O; Agarwala R; Wahl S Front Psychol; 2022; 13():881269. PubMed ID: 36160516 [TBL] [Abstract][Full Text] [Related]
50. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103 [TBL] [Abstract][Full Text] [Related]
51. Virtual exertions: evoking the sense of exerting forces in virtual reality using gestures and muscle activity. Chen KB; Ponto K; Tredinnick RD; Radwin RG Hum Factors; 2015 Jun; 57(4):658-73. PubMed ID: 25977324 [TBL] [Abstract][Full Text] [Related]
53. Allocentric information is used for memory-guided reaching in depth: A virtual reality study. Klinghammer M; Schütz I; Blohm G; Fiehler K Vision Res; 2016 Dec; 129():13-24. PubMed ID: 27789230 [TBL] [Abstract][Full Text] [Related]
54. Facial Motion Capture System Based on Facial Electromyogram and Electrooculogram for Immersive Social Virtual Reality Applications. Kim C; Cha HS; Kim J; Kwak H; Lee W; Im CH Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050641 [TBL] [Abstract][Full Text] [Related]
55. Virtual and augmented reality in biomedical engineering. Taghian A; Abo-Zahhad M; Sayed MS; Abd El-Malek AH Biomed Eng Online; 2023 Jul; 22(1):76. PubMed ID: 37525193 [TBL] [Abstract][Full Text] [Related]
56. Virtual fashion experiences in virtual reality fashion show spaces. Kim SJ Front Psychol; 2023; 14():1276856. PubMed ID: 38046109 [TBL] [Abstract][Full Text] [Related]
57. Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson's disease: effects of moving targets. Wang CY; Hwang WJ; Fang JJ; Sheu CF; Leong IF; Ma HI Arch Phys Med Rehabil; 2011 Aug; 92(8):1238-45. PubMed ID: 21718966 [TBL] [Abstract][Full Text] [Related]
58. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867 [TBL] [Abstract][Full Text] [Related]
59. Influence of virtual reality on visual parameters: immersive versus non-immersive mode. Yoon HJ; Kim J; Park SW; Heo H BMC Ophthalmol; 2020 May; 20(1):200. PubMed ID: 32448140 [TBL] [Abstract][Full Text] [Related]
60. From lab-based studies to eye-tracking in virtual and real worlds: conceptual and methodological problems and solutions. Symposium 4 at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019. Hooge ITC; Hessels RS; Niehorster DC; Diaz GJ; Duchowski AT; Pelz JB J Eye Mov Res; 2019 Nov; 12(7):. PubMed ID: 33828764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]