These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38827232)

  • 1. DeepSP: Deep learning-based spatial properties to predict monoclonal antibody stability.
    Kalejaye L; Wu IE; Terry T; Lai PK
    Comput Struct Biotechnol J; 2024 Dec; 23():2220-2229. PubMed ID: 38827232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepSCM: An efficient convolutional neural network surrogate model for the screening of therapeutic antibody viscosity.
    Lai PK
    Comput Struct Biotechnol J; 2022; 20():2143-2152. PubMed ID: 35832619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepSP: A Deep Learning Framework for Spatial Proteomics.
    Wang B; Zhang X; Xu C; Han X; Wang Y; Situ C; Li Y; Guo X
    J Proteome Res; 2023 Jul; 22(7):2186-2198. PubMed ID: 37314414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning prediction of antibody aggregation and viscosity for high concentration formulation development of protein therapeutics.
    Lai PK; Gallegos A; Mody N; Sathish HA; Trout BL
    MAbs; 2022; 14(1):2026208. PubMed ID: 35075980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Feature Selection for Predicting High Concentration Therapeutic Antibody Aggregation.
    Lai PK; Fernando A; Cloutier TK; Kingsbury JS; Gokarn Y; Halloran KT; Calero-Rubio C; Trout BL
    J Pharm Sci; 2021 Apr; 110(4):1583-1591. PubMed ID: 33346034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in human IgG1 and IgG4 S228P monoclonal antibodies viscosity and self-interactions: Experimental assessment and computational predictions of domain interactions.
    Lai PK; Ghag G; Yu Y; Juan V; Fayadat-Dilman L; Trout BL
    MAbs; 2021; 13(1):1991256. PubMed ID: 34747330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancing material property prediction: using physics-informed machine learning models for viscosity.
    Chew AK; Sender M; Kaplan Z; Chandrasekaran A; Chief Elk J; Browning AR; Kwak HS; Halls MD; Afzal MAF
    J Cheminform; 2024 Mar; 16(1):31. PubMed ID: 38486289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiating stable and unstable protein using convolution neural network and molecular dynamics simulations.
    Suyash S; Jha A; Maitra P; Punia P; Mishra A
    Comput Biol Chem; 2024 Jun; 110():108081. PubMed ID: 38677012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of aggregation prone regions of therapeutic proteins.
    Chennamsetty N; Voynov V; Kayser V; Helk B; Trout BL
    J Phys Chem B; 2010 May; 114(19):6614-24. PubMed ID: 20411962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational tool for the early screening of monoclonal antibodies for their viscosities.
    Agrawal NJ; Helk B; Kumar S; Mody N; Sathish HA; Samra HS; Buck PM; Li L; Trout BL
    MAbs; 2016; 8(1):43-8. PubMed ID: 26399600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods.
    Wang DD; Ou-Yang L; Xie H; Zhu M; Yan H
    Comput Struct Biotechnol J; 2020; 18():439-454. PubMed ID: 32153730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides.
    Charoenkwan P; Yana J; Schaduangrat N; Nantasenamat C; Hasan MM; Shoombuatong W
    Genomics; 2020 Jul; 112(4):2813-2822. PubMed ID: 32234434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Models of Antibody-Excipient Preferential Interactions for Use in Computational Formulation Design.
    Cloutier TK; Sudrik C; Mody N; Sathish HA; Trout BL
    Mol Pharm; 2020 Sep; 17(9):3589-3599. PubMed ID: 32794710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Computationally-Determined Properties for Machine Learning Prediction of Self-Diffusion Coefficients in Pure Liquids.
    Allers JP; Priest CW; Greathouse JA; Alam TM
    J Phys Chem B; 2021 Dec; 125(47):12990-13002. PubMed ID: 34793167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepRaccess: high-speed RNA accessibility prediction using deep learning.
    Hara K; Iwano N; Fukunaga T; Hamada M
    Front Bioinform; 2023; 3():1275787. PubMed ID: 37881622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.