These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 38827341)
1. Time and Cost-Effective Genome Editing Protocol for Simultaneous Caspase 8 Associated Protein 2 Gene Knock in/out in Chinese Hamster Ovary Cells Using CRISPR-Cas9 System. Sorourian S; Behzad Behbahani A; Forouzanfar M; Jafarinia M; Safari F Iran J Biotechnol; 2024 Jan; 22(1):e3714. PubMed ID: 38827341 [TBL] [Abstract][Full Text] [Related]
2. Multiplex Genome Editing in Chinese Hamster Ovary Cell Line Using All-in-One and HITI CRISPR Technology. Safari F; Farajnia S; Ghasemi Y; Zarghami N; Barekati Mowahed M Adv Pharm Bull; 2021 Feb; 11(2):343-350. PubMed ID: 33880357 [No Abstract] [Full Text] [Related]
3. Targeting Caspase-3 Gene in rCHO Cell Line by CRISPR/Cas9 Editing Tool and Its Effect on Protein Production in Manipulated Cell Line. Rahimi A; Karimipoor M; Mahdian R; Alipour A; Hosseini S; Kaghazian H; Abbasi A; Shahsavarani H; Shokrgozar MA Iran J Pharm Res; 2022 Dec; 21(1):e130236. PubMed ID: 36915405 [TBL] [Abstract][Full Text] [Related]
4. Efficient CRISPR/Cas9-Mediated BAX Gene Ablation in CHO Cells To Impair Apoptosis and Enhance Recombinant Protein Production. Rahimi A; Karimipoor M; Mahdian R; Alipour A; Hosseini S; Mohammadi M; Kaghazian H; Abbasi A; Shahsavarani H; Shokrgozar MA Iran J Biotechnol; 2023 Apr; 21(2):e3388. PubMed ID: 37228627 [TBL] [Abstract][Full Text] [Related]
5. A CRISPR/Cas9 based engineering strategy for overexpression of multiple genes in Chinese hamster ovary cells. Eisenhut P; Klanert G; Weinguny M; Baier L; Jadhav V; Ivansson D; Borth N Metab Eng; 2018 Jul; 48():72-81. PubMed ID: 29852271 [TBL] [Abstract][Full Text] [Related]
6. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Shin SW; Kim D; Lee JS Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701 [TBL] [Abstract][Full Text] [Related]
7. Caspase-7 deficiency in Chinese hamster ovary cells reduces cell proliferation and viability. Safari F; Farajnia S; Behzad Behbahani A; Zarredar H; Barekati-Mowahed M; Dehghani H Biol Res; 2020 Nov; 53(1):52. PubMed ID: 33187557 [TBL] [Abstract][Full Text] [Related]
8. A ribonucleoprotein-based decaplex CRISPR/Cas9 knockout strategy for CHO host engineering. Carver J; Kern M; Ko P; Greenwood-Goodwin M; Yu XC; Duan D; Tang D; Misaghi S; Auslaender S; Haley B; Yuk IH; Shen A Biotechnol Prog; 2022 Jan; 38(1):e3212. PubMed ID: 34538022 [TBL] [Abstract][Full Text] [Related]
9. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9-Mediated Knockout of MicroRNA-744 Improves Antibody Titer of CHO Production Cell Lines. Raab N; Mathias S; Alt K; Handrick R; Fischer S; Schmieder V; Jadhav V; Borth N; Otte K Biotechnol J; 2019 May; 14(5):e1800477. PubMed ID: 30802343 [TBL] [Abstract][Full Text] [Related]
11. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Ronda C; Pedersen LE; Hansen HG; Kallehauge TB; Betenbaugh MJ; Nielsen AT; Kildegaard HF Biotechnol Bioeng; 2014 Aug; 111(8):1604-16. PubMed ID: 24827782 [TBL] [Abstract][Full Text] [Related]
12. Genome editing approaches with CRISPR/Cas9: the association of NOX4 expression in breast cancer patients and effectiveness evaluation of different strategies of CRISPR/Cas9 to knockout Nox4 in cancer cells. Javadi M; Sazegar H; Doosti A BMC Cancer; 2023 Nov; 23(1):1155. PubMed ID: 38012557 [TBL] [Abstract][Full Text] [Related]
13. Targeted Gene Deletion Using DNA-Free RNA-Guided Cas9 Nuclease Accelerates Adaptation of CHO Cells to Suspension Culture. Lee N; Shin J; Park JH; Lee GM; Cho S; Cho BK ACS Synth Biol; 2016 Nov; 5(11):1211-1219. PubMed ID: 26854539 [TBL] [Abstract][Full Text] [Related]
14. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction. Schweickert PG; Wang N; Sandefur SL; Lloyd ME; Konieczny SF; Frye CC; Cheng Z Biotechnol J; 2021 Apr; 16(4):e2000308. PubMed ID: 33369118 [TBL] [Abstract][Full Text] [Related]
18. Novel CRISPR/Cas9-mediated knockout of LIG4 increases efficiency of site-specific integration in Chinese hamster ovary cell line. Wang C; Sun Z; Wang M; Jiang Z; Zhang M; Cao H; Luo L; Qiao C; Xiao H; Chen G; Li X; Liu J; Wei Z; Shen B; Wang J; Feng J Biotechnol Lett; 2022 Sep; 44(9):1063-1072. PubMed ID: 35918621 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Genome Editing Tools For Multi-Gene Deletion Knock-Out Approaches Using Paired CRISPR sgRNAs in CHO Cells. Schmieder V; Bydlinski N; Strasser R; Baumann M; Kildegaard HF; Jadhav V; Borth N Biotechnol J; 2018 Mar; 13(3):e1700211. PubMed ID: 28976642 [TBL] [Abstract][Full Text] [Related]
20. CRISPR Genome Editing Made Easy Through the CHOPCHOP Website. Labun K; Krause M; Torres Cleuren Y; Valen E Curr Protoc; 2021 Apr; 1(4):e46. PubMed ID: 33905612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]