BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38827411)

  • 1. The axes of biology: a novel axes-based network embedding paradigm to decipher the functional mechanisms of the cell.
    Doria-Belenguer S; Xenos A; Ceddia G; Malod-Dognin N; Pržulj N
    Bioinform Adv; 2024; 4(1):vbae075. PubMed ID: 38827411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional analysis of omic network embedding spaces reveals key altered functions in cancer.
    Doria-Belenguer S; Xenos A; Ceddia G; Malod-Dognin N; Pržulj N
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear functional organization of the omic embedding space.
    Xenos A; Malod-Dognin N; Milinković S; Pržulj N
    Bioinformatics; 2021 Nov; 37(21):3839-3847. PubMed ID: 34213534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying cellular cancer mechanisms through pathway-driven data integration.
    Windels SFL; Malod-Dognin N; Pržulj N
    Bioinformatics; 2022 Sep; 38(18):4344-4351. PubMed ID: 35916710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining hidden knowledge: embedding models of cause-effect relationships curated from the biomedical literature.
    Krämer A; Green J; Billaud JN; Pasare NA; Jones M; Tugendreich S
    Bioinform Adv; 2022; 2(1):vbac022. PubMed ID: 36699407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding.
    Cannistraci CV; Alanis-Lobato G; Ravasi T
    Bioinformatics; 2013 Jul; 29(13):i199-209. PubMed ID: 23812985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined embedding model for MiRNA-disease association prediction.
    Liu B; Zhu X; Zhang L; Liang Z; Li Z
    BMC Bioinformatics; 2021 Mar; 22(1):161. PubMed ID: 33765909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To Embed or Not: Network Embedding as a Paradigm in Computational Biology.
    Nelson W; Zitnik M; Wang B; Leskovec J; Goldenberg A; Sharan R
    Front Genet; 2019; 10():381. PubMed ID: 31118945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification.
    Dai W; Chang Q; Peng W; Zhong J; Li Y
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 32023848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.
    Gu W; Gong L; Lou X; Zhang J
    Sci Rep; 2017 Oct; 7(1):13114. PubMed ID: 29030547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Temporal Community Structure via Network Embedding.
    Li T; Wang W; Jiao P; Wang Y; Ding R; Wu H; Pan L; Jin D
    IEEE Trans Cybern; 2023 Nov; 53(11):7021-7033. PubMed ID: 35507615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network Representation of Large-Scale Heterogeneous RNA Sequences with Integration of Diverse Multi-omics, Interactions, and Annotations Data.
    Tran N; Gao J
    Pac Symp Biocomput; 2020; 25():499-510. PubMed ID: 31797622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SENSE: Siamese neural network for sequence embedding and alignment-free comparison.
    Zheng W; Yang L; Genco RJ; Wactawski-Wende J; Buck M; Sun Y
    Bioinformatics; 2019 Jun; 35(11):1820-1828. PubMed ID: 30346493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ISOGO: Functional annotation of protein-coding splice variants.
    Ferrer-Bonsoms JA; Cassol I; Fernández-Acín P; Castilla C; Carazo F; Rubio A
    Sci Rep; 2020 Jan; 10(1):1069. PubMed ID: 31974522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural approach for finding functional modules from large biological networks.
    Mete M; Tang F; Xu X; Yuruk N
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S19. PubMed ID: 18793464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSN: unsupervised approach for inferring biological networks based on the genome alone.
    Galili M; Tuller T
    BMC Bioinformatics; 2020 May; 21(1):190. PubMed ID: 32414319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MUNDO: protein function prediction embedded in a multispecies world.
    Arsenescu V; Devkota K; Erden M; Shpilker P; Werenski M; Cowen LJ
    Bioinform Adv; 2022; 2(1):vbab025. PubMed ID: 36699351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.