These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On a Linear Gromov-Wasserstein Distance. Beier F; Beinert R; Steidl G IEEE Trans Image Process; 2022; 31():7292-7305. PubMed ID: 36378791 [TBL] [Abstract][Full Text] [Related]
3. Scalable Gromov-Wasserstein Based Comparison of Biological Time Series. Kravtsova N; McGee Ii RL; Dawes AT Bull Math Biol; 2023 Jul; 85(8):77. PubMed ID: 37415049 [TBL] [Abstract][Full Text] [Related]
4. Anchor Space Optimal Transport as a Fast Solution to Multiple Optimal Transport Problems. Huang J; Su X; Fang Z; Kasai H IEEE Trans Neural Netw Learn Syst; 2024 Oct; PP():. PubMed ID: 39361469 [TBL] [Abstract][Full Text] [Related]
5. Wasserstein task embedding for measuring task similarities. Liu X; Bai Y; Lu Y; Soltoggio A; Kolouri S Neural Netw; 2025 Jan; 181():106796. PubMed ID: 39454371 [TBL] [Abstract][Full Text] [Related]
7. Multisource single-cell data integration by MAW barycenter for Gaussian mixture models. Lin L; Shi W; Ye J; Li J Biometrics; 2023 Jun; 79(2):866-877. PubMed ID: 35220585 [TBL] [Abstract][Full Text] [Related]
8. Aggregated Wasserstein Distance and State Registration for Hidden Markov Models. Chen Y; Ye J; Li J IEEE Trans Pattern Anal Mach Intell; 2020 Sep; 42(9):2133-2147. PubMed ID: 30946661 [TBL] [Abstract][Full Text] [Related]
9. Correcting nuisance variation using Wasserstein distance. Tabak G; Fan M; Yang S; Hoyer S; Davis G PeerJ; 2020; 8():e8594. PubMed ID: 32161688 [TBL] [Abstract][Full Text] [Related]
10. Exploring predictive states via Cantor embeddings and Wasserstein distance. Loomis SP; Crutchfield JP Chaos; 2022 Dec; 32(12):123115. PubMed ID: 36587324 [TBL] [Abstract][Full Text] [Related]
11. Wasserstein-based texture analysis in radiomic studies. Belkhatir Z; Estépar RSJ; Tannenbaum AR Comput Med Imaging Graph; 2022 Dec; 102():102129. PubMed ID: 36308869 [TBL] [Abstract][Full Text] [Related]
13. Entropy-Regularized Optimal Transport on Multivariate Normal and Tong Q; Kobayashi K Entropy (Basel); 2021 Mar; 23(3):. PubMed ID: 33802490 [TBL] [Abstract][Full Text] [Related]
14. Conditional Wasserstein Generator. Kim YG; Lee K; Paik MC IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7208-7219. PubMed ID: 36355746 [TBL] [Abstract][Full Text] [Related]
15. A novel kernel Wasserstein distance on Gaussian measures: An application of identifying dental artifacts in head and neck computed tomography. Oh JH; Pouryahya M; Iyer A; Apte AP; Deasy JO; Tannenbaum A Comput Biol Med; 2020 May; 120():103731. PubMed ID: 32217284 [TBL] [Abstract][Full Text] [Related]
16. HOT-GAN: Hilbert Optimal Transport for Generative Adversarial Network. Li Q; Wang Z; Xia H; Li G; Cao Y; Yao L; Xu G IEEE Trans Neural Netw Learn Syst; 2024 Jun; PP():. PubMed ID: 38833390 [TBL] [Abstract][Full Text] [Related]
17. CONSTRUCTION OF 4D NEONATAL CORTICAL SURFACE ATLASES USING WASSERSTEIN DISTANCE. Chen Z; Wu Z; Sun L; Wang F; Wang L; Lin W; Gilmore JH; Shen D; Li G Proc IEEE Int Symp Biomed Imaging; 2019 Apr; 2019():995-998. PubMed ID: 31354918 [TBL] [Abstract][Full Text] [Related]
18. Wasserstein Distances, Geodesics and Barycenters of Merge Trees. Pont M; Vidal J; Delon J; Tierny J IEEE Trans Vis Comput Graph; 2022 Jan; 28(1):291-301. PubMed ID: 34596544 [TBL] [Abstract][Full Text] [Related]
19. Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis. Su Z; Zeng W; Wang Y; Lu ZL; Gu X Inf Process Med Imaging; 2015; 24():411-23. PubMed ID: 26221691 [TBL] [Abstract][Full Text] [Related]
20. Autoregressive optimal transport models. Zhu C; Müller HG J R Stat Soc Series B Stat Methodol; 2023 Jul; 85(3):1012-1033. PubMed ID: 37521164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]