BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38827585)

  • 1. Predictive ecological niche model for
    Pham MP; Vu DD; Nguyen TT; Nguyen VS
    Biodivers Data J; 2024; 12():e122325. PubMed ID: 38827585
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterisation of the
    Pham MP; Vu DD; Bei C; Bui TTX; Vu DG; Shah SNM
    Biodivers Data J; 2024; 12():e123405. PubMed ID: 38919771
    [No Abstract]   [Full Text] [Related]  

  • 3. Species-specific effects of climate change on the distribution of suitable baboon habitats - Ecological niche modeling of current and Last Glacial Maximum conditions.
    Chala D; Roos C; Svenning JC; Zinner D
    J Hum Evol; 2019 Jul; 132():215-226. PubMed ID: 31203848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioclimatic modeling in the Last Glacial Maximum, Mid-Holocene and facing future climatic changes in the strawberry tree (Arbutus unedo L.).
    Ribeiro MM; Roque N; Ribeiro S; Gavinhos C; Castanheira I; Quinta-Nova L; Albuquerque T; Gerassis S
    PLoS One; 2019; 14(1):e0210062. PubMed ID: 30625214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Niche modeling for the genus
    Rej JE; Joyner TA
    PeerJ; 2018; 6():e6128. PubMed ID: 30588407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran.
    Morovati M; Karami P; Bahadori Amjas F
    PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Oncomelania hupensis distribution in association with climate change using machine learning models.
    Xu N; Zhang Y; Du C; Song J; Huang J; Gong Y; Jiang H; Tong Y; Yin J; Wang J; Jiang F; Chen Y; Jiang Q; Dong Y; Zhou Y
    Parasit Vectors; 2023 Oct; 16(1):377. PubMed ID: 37872579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling climate influences on the distribution of the parapatric newts
    Iannella M; Cerasoli F; Biondi M
    Front Zool; 2017; 14():55. PubMed ID: 29255477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Historical, Current, and Future Configuration of Tibetan Medicinal Herb
    Li M; Zhang Y; Yang Y; Wang T; Wu C; Zhang X
    Plants (Basel); 2024 Feb; 13(5):. PubMed ID: 38475491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Past, present, and future predictions on the suitable habitat of the Slender racer (
    Park IK; Borzée A; Park J; Min SH; Zhang YP; Li SR; Park D
    Ecol Evol; 2022 Aug; 12(8):e9169. PubMed ID: 35919392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling.
    Li Y; Shao W; Jiang J
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21751-21768. PubMed ID: 34773237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial dynamics of Chinese Muntjac related to past and future climate fluctuations.
    Sun Z; Orozco-terWengel P; Chen G; Sun R; Sun L; Wang H; Shi W; Zhang B
    Curr Zool; 2021 Aug; 67(4):361-370. PubMed ID: 34616935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting suitable habitats of Melia azedarach L. in China using data mining.
    Feng L; Tian X; El-Kassaby YA; Qiu J; Feng Z; Sun J; Wang G; Wang T
    Sci Rep; 2022 Jul; 12(1):12617. PubMed ID: 35871227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm.
    Rather TA; Kumar S; Khan JA
    Sci Rep; 2020 Jul; 10(1):11473. PubMed ID: 32651414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the distribution pattern of the ectomycorrhizal fungus
    Zheng Y; Yuan C; Matsushita N; Lian C; Geng Q
    Ecol Evol; 2023 Sep; 13(9):e10565. PubMed ID: 37753310
    [No Abstract]   [Full Text] [Related]  

  • 17. Shifts in the Distribution Range and Niche Dynamics of the Globally Threatened Western Tragopan (
    Jameel MA; Nadeem MS; Haq SM; Mubeen I; Shabbir A; Aslam S; Ahmad R; Gaafar AZ; Al-Munqedhi BMA; Bussmann RW
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of climate change on species distribution patterns of
    Fan ZF; Zhou BJ; Ma CL; Gao C; Han DN; Chai Y
    Ecol Evol; 2022 Dec; 12(12):e9516. PubMed ID: 36523536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India.
    Kumar D; Rawat S
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Distribution Pattern and Species Richness of Scorpionflies (Mecoptera: Panorpidae).
    Su J; Liu W; Hu F; Miao P; Xing L; Hua Y
    Insects; 2023 Mar; 14(4):. PubMed ID: 37103147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.