These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38828393)
21. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Sakami S; Kolesnikov AV; Kefalov VJ; Palczewski K Hum Mol Genet; 2014 Apr; 23(7):1723-41. PubMed ID: 24214395 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a Rho Sancho-Pelluz J; Cui X; Lee W; Tsai YT; Wu WH; Justus S; Washington I; Hsu CW; Park KS; Koch S; Velez G; Bassuk AG; Mahajan VB; Lin CS; Tsang SH Cell Mol Life Sci; 2019 Sep; 76(18):3657-3665. PubMed ID: 30976840 [TBL] [Abstract][Full Text] [Related]
23. CRISPR/SaCas9-based gene editing rescues photoreceptor degeneration throughout a rhodopsin-associated autosomal dominant retinitis pigmentosa mouse model. Du W; Li J; Tang X; Yu W; Zhao M Exp Biol Med (Maywood); 2023 Oct; 248(20):1818-1828. PubMed ID: 37837380 [TBL] [Abstract][Full Text] [Related]
24. Differential Contribution of Calcium-Activated Proteases and ER-Stress in Three Mouse Models of Retinitis Pigmentosa Expressing P23H Mutant RHO. Comitato A; Schiroli D; La Marca C; Marigo V Adv Exp Med Biol; 2019; 1185():311-316. PubMed ID: 31884630 [TBL] [Abstract][Full Text] [Related]
25. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin. Jiang H; Xiong S; Xia X Cell Biosci; 2014; 4(1):75. PubMed ID: 25530840 [TBL] [Abstract][Full Text] [Related]
26. Cellular expression and siRNA-mediated interference of rhodopsin cis-acting splicing mutants associated with autosomal dominant retinitis pigmentosa. Hernan I; Gamundi MJ; Planas E; Borràs E; Maseras M; Carballo M Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3723-9. PubMed ID: 21357407 [TBL] [Abstract][Full Text] [Related]
27. Inhibiting autophagy reduces retinal degeneration caused by protein misfolding. Yao J; Qiu Y; Frontera E; Jia L; Khan NW; Klionsky DJ; Ferguson TA; Thompson DA; Zacks DN Autophagy; 2018; 14(7):1226-1238. PubMed ID: 29940785 [TBL] [Abstract][Full Text] [Related]
28. Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. Rajan RS; Kopito RR J Biol Chem; 2005 Jan; 280(2):1284-91. PubMed ID: 15509574 [TBL] [Abstract][Full Text] [Related]
29. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. Saliba RS; Munro PM; Luthert PJ; Cheetham ME J Cell Sci; 2002 Jul; 115(Pt 14):2907-18. PubMed ID: 12082151 [TBL] [Abstract][Full Text] [Related]
30. Retinal histopathology in eyes from patients with autosomal dominant retinitis pigmentosa caused by rhodopsin mutations. Bonilha VL; Rayborn ME; Bell BA; Marino MJ; Beight CD; Pauer GJ; Traboulsi EI; Hollyfield JG; Hagstrom SA Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2161-9. PubMed ID: 26202387 [TBL] [Abstract][Full Text] [Related]
31. Novel rhodopsin mutation in a Chinese family with autosomal dominant retinitis pigmentosa. Zhao K; Xiong S; Wang L; Wang L; Cui Y; Wang Q Ophthalmic Genet; 2001 Sep; 22(3):155-62. PubMed ID: 11559857 [TBL] [Abstract][Full Text] [Related]
32. Modeling autosomal dominant retinitis pigmentosa by using patient-specific retinal organoids with a class-3 RHO mutation. Lin X; Liu ZL; Zhang X; Wang W; Huang ZQ; Sun SN; Jin ZB Exp Eye Res; 2024 Apr; 241():109856. PubMed ID: 38479725 [TBL] [Abstract][Full Text] [Related]
33. Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Kang MJ; Ryoo HD Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17043-8. PubMed ID: 19805114 [TBL] [Abstract][Full Text] [Related]
34. Genetic Analysis of the Rhodopsin Gene Identifies a Mosaic Dominant Retinitis Pigmentosa Mutation in a Healthy Individual. Beryozkin A; Levy G; Blumenfeld A; Meyer S; Namburi P; Morad Y; Gradstein L; Swaroop A; Banin E; Sharon D Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):940-7. PubMed ID: 26962691 [TBL] [Abstract][Full Text] [Related]
35. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. Illing ME; Rajan RS; Bence NF; Kopito RR J Biol Chem; 2002 Sep; 277(37):34150-60. PubMed ID: 12091393 [TBL] [Abstract][Full Text] [Related]
36. ER stress in retinal degeneration in S334ter Rho rats. Shinde VM; Sizova OS; Lin JH; LaVail MM; Gorbatyuk MS PLoS One; 2012; 7(3):e33266. PubMed ID: 22432009 [TBL] [Abstract][Full Text] [Related]
37. Retinitis pigmentosa‑associated rhodopsin mutant T17M induces endoplasmic reticulum (ER) stress and sensitizes cells to ER stress-induced cell death. Jiang H; Xiong S; Xia X Mol Med Rep; 2014 May; 9(5):1737-42. PubMed ID: 24573320 [TBL] [Abstract][Full Text] [Related]
38. Sigma 1 receptor activation improves retinal structure and function in the Rho Barwick SR; Xiao H; Wolff D; Wang J; Perry E; Marshall B; Smith SB Exp Eye Res; 2023 May; 230():109462. PubMed ID: 37003581 [TBL] [Abstract][Full Text] [Related]
39. Assessment of visual function and retinal structure following acute light exposure in the light sensitive T4R rhodopsin mutant dog. Iwabe S; Ying GS; Aguirre GD; Beltran WA Exp Eye Res; 2016 May; 146():341-353. PubMed ID: 27085210 [TBL] [Abstract][Full Text] [Related]
40. Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations. Aleman TS; Cideciyan AV; Sumaroka A; Windsor EA; Herrera W; White DA; Kaushal S; Naidu A; Roman AJ; Schwartz SB; Stone EM; Jacobson SG Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1580-90. PubMed ID: 18385078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]