BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38828675)

  • 1. A sensitive sandwich-type electrochemical aptasensing platform based on Ti
    Yao X; Yang L; Yang S; Shen J; Huo D; Fa H; Hou C; Yang M
    Anal Methods; 2024 Jun; 16(24):3867-3877. PubMed ID: 38828675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH
    Yao X; Shen J; Liu Q; Fa H; Yang M; Hou C
    Anal Methods; 2020 Nov; 12(41):4967-4976. PubMed ID: 33006333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk.
    Govindasamy M; Chen SM; Mani V; Devasenathipathy R; Umamaheswari R; Joseph Santhanaraj K; Sathiyan A
    J Colloid Interface Sci; 2017 Jan; 485():129-136. PubMed ID: 27662024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes.
    Zhou L; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Talanta; 2017 May; 167():544-549. PubMed ID: 28340759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoS
    Huang H; Camarada MB; Wang D; Liao X; Xiong W; Du J; Xiong J; Hong Y
    Mikrochim Acta; 2021 Dec; 189(1):15. PubMed ID: 34873654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glassy carbon electrodes modified with reduced graphene oxide-MoS
    Madhuvilakku R; Alagar S; Mariappan R; Piraman S
    Anal Chim Acta; 2020 Jan; 1093():93-105. PubMed ID: 31735219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol.
    Pilehvar S; Dierckx T; Blust R; Breugelmans T; De Wael K
    Sensors (Basel); 2014 Jul; 14(7):12059-69. PubMed ID: 25004156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemical aptasensor based on PEI-C
    He B; Wang S
    Mikrochim Acta; 2021 Jan; 188(1):22. PubMed ID: 33404928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles.
    Roushani M; Rahmati Z; Farokhi S; Hoseini SJ; Fath RH
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110388. PubMed ID: 31923985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification.
    Wang Y; Gan N; Zhou Y; Li T; Hu F; Cao Y; Chen Y
    Biosens Bioelectron; 2017 Nov; 97():100-106. PubMed ID: 28578167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA cyclic assembling control in an electrochemical strategy with MoS
    Wang L; Zhang L; Yu Y; Lin B; Wang Y; Guo M; Cao Y
    Mikrochim Acta; 2021 Jul; 188(8):264. PubMed ID: 34287718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification.
    Fang LX; Huang KJ; Liu Y
    Biosens Bioelectron; 2015 Sep; 71():171-178. PubMed ID: 25909336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical aptasensor based on gold nanoparticle decorated Ti
    Yang X; Guo W; Umar A; Algadi H; Ibrahim AA; Zhao C; Ren Z; Wang L; Pei M
    Mikrochim Acta; 2023 May; 190(6):206. PubMed ID: 37162685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two kanamycin electrochemical aptamer-based sensors using different signal transduction mechanisms: A comparison of electrochemical behavior and sensing performance.
    Han X; Yu Z; Li F; Shi W; Fu C; Yan H; Zhang G
    Bioelectrochemistry; 2019 Oct; 129():270-277. PubMed ID: 31254804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive aptasensor based on synergetic catalysis activity of MoS
    Song HY; Kang TF; Lu LP; Cheng SY
    Talanta; 2017 Mar; 164():27-33. PubMed ID: 28107929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microchip electrophoresis based aptasensor for multiplexed detection of antibiotics in foods via a stir-bar assisted multi-arm junctions recycling for signal amplification.
    Zhang K; Gan N; Shen Z; Cao J; Hu F; Li T
    Biosens Bioelectron; 2019 Apr; 130():139-146. PubMed ID: 30735947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites.
    Fei A; Liu Q; Huan J; Qian J; Dong X; Qiu B; Mao H; Wang K
    Biosens Bioelectron; 2015 Aug; 70():122-9. PubMed ID: 25797851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Liu T; Gu M; Zhao L; Wu X; Li Z; Wang GL
    Chem Commun (Camb); 2021 Sep; 57(71):8989-8992. PubMed ID: 34486607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B
    Geleta GS; Zhao Z; Wang Z
    Analyst; 2018 Mar; 143(7):1644-1649. PubMed ID: 29509194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework.
    Zhang Y; Li B; Wei X; Gu Q; Chen M; Zhang J; Mo S; Wang J; Xue L; Ding Y; Wu Q
    Mikrochim Acta; 2021 Aug; 188(8):286. PubMed ID: 34345968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.