These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38829015)

  • 61. Methane Oxidation over Cu
    Fischer JWA; Brenig A; Klose D; van Bokhoven JA; Sushkevich VL; Jeschke G
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202303574. PubMed ID: 37292054
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advancements in low-temperature NH
    Ogugua PC; Wang E; Jinyang Z; Wang Q; Su H
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):84972-84998. PubMed ID: 37393212
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison study of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts for selective catalytic reduction of NO with NH3 at low temperature.
    Zhu L; Zhong Z; Yang H; Wang C
    J Colloid Interface Sci; 2016 Sep; 478():11-21. PubMed ID: 27280535
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effect of SO
    Han J; Bjerregaard JD; Grönbeck H; Creaser D; Olsson L
    ACS Eng Au; 2024 Aug; 4(4):405-421. PubMed ID: 39185390
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cu-OFF/ERI Zeolite: Intergrowth Structure Synergistically Boosting Selective Catalytic Reduction of NO
    Han J; Li J; Zhao W; Li L; Chen M; Ge X; Wang S; Liu Q; Mei D; Yu J
    J Am Chem Soc; 2024 Mar; 146(11):7605-7615. PubMed ID: 38467427
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Toward an Atomic-Level Understanding of Ceria-Based Catalysts: When Experiment and Theory Go Hand in Hand.
    Ziemba M; Schilling C; Ganduglia-Pirovano MV; Hess C
    Acc Chem Res; 2021 Jul; 54(13):2884-2893. PubMed ID: 34137246
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Design of Ca-type todorokite catalysts with highly active for the selective reduction of NO
    Chang C; Yan Z; Zhang C; Zhang Y; Jiang M; Ruan L; Xiao M; Yu Y; He H
    J Environ Sci (China); 2024 Apr; 138():697-708. PubMed ID: 38135432
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ammonia-Containing Species Formed in Cu-Chabazite As Per In Situ EPR, Solid-State NMR, and DFT Calculations.
    Moreno-González M; Hueso B; Boronat M; Blasco T; Corma A
    J Phys Chem Lett; 2015 Mar; 6(6):1011-7. PubMed ID: 26262861
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Insight into the reaction mechanism over PMoA for low temperature NH
    Jia Y; Jiang J; Zheng R; Guo L; Yuan J; Zhang S; Gu M
    J Hazard Mater; 2021 Jun; 412():125258. PubMed ID: 33548788
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhancement of the activity of Cu/TiO
    Liu YZ; Xu QY; Guo RT; Duan CP; Wu GL; Miao YF; Gu JW
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27663-27673. PubMed ID: 32394254
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Combined Experimental and Density Functional Theory Study on the Mechanism of the Selective Catalytic Reduction of NO with NH
    Duan R; Li Z; Fu Y; Shan Y; Yu Y; He G; He H
    Environ Sci Technol; 2024 Mar; 58(12):5598-5605. PubMed ID: 38466913
    [TBL] [Abstract][Full Text] [Related]  

  • 72. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.
    Xu C; Liu J; Zhao Z; Yu F; Cheng K; Wei Y; Duan A; Jiang G
    J Environ Sci (China); 2015 May; 31():74-80. PubMed ID: 25968261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deactivation of Cu-Exchanged Automotive-Emission NH
    Ye X; Schmidt JE; Wang RP; van Ravenhorst IK; Oord R; Chen T; de Groot F; Meirer F; Weckhuysen BM
    Angew Chem Int Ed Engl; 2020 Sep; 59(36):15610-15617. PubMed ID: 32011783
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Detection of key transient Cu intermediates in SSZ-13 during NH
    Greenaway AG; Marberger A; Thetford A; Lezcano-González I; Agote-Arán M; Nachtegaal M; Ferri D; Kröcher O; Catlow CRA; Beale AM
    Chem Sci; 2020 Jan; 11(2):447-455. PubMed ID: 32190265
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Selective Catalytic Reduction of NO by NH
    Yamamoto A; Teramura K; Tanaka T
    Chem Rec; 2016 Oct; 16(5):2268-2277. PubMed ID: 27339819
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Revealing the effect of paired redox-acid sites on metal oxide catalysts for efficient NO
    Tan W; Wang C; Yu S; Li Y; Xie S; Gao F; Dong L; Liu F
    J Hazard Mater; 2021 Aug; 416():125826. PubMed ID: 34492788
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simultaneous removal of NO and Hg
    Chi G; Shen B; Yu R; He C; Zhang X
    J Hazard Mater; 2017 May; 330():83-92. PubMed ID: 28212513
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Study on the Performance of the Zr-Modified Cu-SSZ-13 Catalyst for Low-Temperature NH
    Du H; Yang S; Li K; Shen Q; Li M; Wang X; Fan C
    ACS Omega; 2022 Dec; 7(49):45144-45152. PubMed ID: 36530236
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selective catalytic reduction of NO
    Shan Y; Du J; Zhang Y; Shan W; Shi X; Yu Y; Zhang R; Meng X; Xiao FS; He H
    Natl Sci Rev; 2021 Oct; 8(10):nwab010. PubMed ID: 34858603
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    Lee H; Nuguid RJG; Jeon SW; Kim HS; Hwang KH; Kröcher O; Ferri D; Kim DH
    Chem Commun (Camb); 2022 Jun; 58(46):6610-6613. PubMed ID: 35583379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.